2 resultados para Transfer coefficient
em Digital Commons - Michigan Tech
Resumo:
Several modern-day cooling applications require the incorporation of mini/micro-channel shear-driven flow condensers. There are several design challenges that need to be overcome in order to meet those requirements. The difficulty in developing effective design tools for shear-driven flow condensers is exacerbated due to the lack of a bridge between the physics-based modelling of condensing flows and the current, popular approach based on semi-empirical heat transfer correlations. One of the primary contributors of this disconnect is a lack of understanding caused by the fact that typical heat transfer correlations eliminate the dependence of the heat transfer coefficient on the method of cooling employed on the condenser surface when it may very well not be the case. This is in direct contrast to direct physics-based modeling approaches where the thermal boundary conditions have a direct and huge impact on the heat transfer coefficient values. Typical heat transfer correlations instead introduce vapor quality as one of the variables on which the value of the heat transfer coefficient depends. This study shows how, under certain conditions, a heat transfer correlation from direct physics-based modeling can be equivalent to typical engineering heat transfer correlations without making the same apriori assumptions. Another huge factor that raises doubts on the validity of the heat-transfer correlations is the opacity associated with the application of flow regime maps for internal condensing flows. It is well known that flow regimes influence heat transfer rates strongly. However, several heat transfer correlations ignore flow regimes entirely and present a single heat transfer correlation for all flow regimes. This is believed to be inaccurate since one would expect significant differences in the heat transfer correlations for different flow regimes. Several other studies present a heat transfer correlation for a particular flow regime - however, they ignore the method by which extents of the flow regime is established. This thesis provides a definitive answer (in the context of stratified/annular flows) to: (i) whether a heat transfer correlation can always be independent of the thermal boundary condition and represented as a function of vapor quality, and (ii) whether a heat transfer correlation can be independently obtained for a flow regime without knowing the flow regime boundary (even if the flow regime boundary is represented through a separate and independent correlation). To obtain the results required to arrive at an answer to these questions, this study uses two numerical simulation tools - the approximate but highly efficient Quasi-1D simulation tool and the exact but more expensive 2D Steady Simulation tool. Using these tools and the approximate values of flow regime transitions, a deeper understanding of the current state of knowledge in flow regime maps and heat transfer correlations in shear-driven internal condensing flows is obtained. The ideas presented here can be extended for other flow regimes of shear-driven flows as well. Analogous correlations can also be obtained for internal condensers in the gravity-driven and mixed-driven configuration.
Resumo:
The primary goal of this project is to demonstrate the practical use of data mining algorithms to cluster a solved steady-state computational fluids simulation (CFD) flow domain into a simplified lumped-parameter network. A commercial-quality code, “cfdMine” was created using a volume-weighted k-means clustering that that can accomplish the clustering of a 20 million cell CFD domain on a single CPU in several hours or less. Additionally agglomeration and k-means Mahalanobis were added as optional post-processing steps to further enhance the separation of the clusters. The resultant nodal network is considered a reduced-order model and can be solved transiently at a very minimal computational cost. The reduced order network is then instantiated in the commercial thermal solver MuSES to perform transient conjugate heat transfer using convection predicted using a lumped network (based on steady-state CFD). When inserting the lumped nodal network into a MuSES model, the potential for developing a “localized heat transfer coefficient” is shown to be an improvement over existing techniques. Also, it was found that the use of the clustering created a new flow visualization technique. Finally, fixing clusters near equipment newly demonstrates a capability to track temperatures near specific objects (such as equipment in vehicles).