8 resultados para Traditional maize production

em Digital Commons - Michigan Tech


Relevância:

40.00% 40.00%

Publicador:

Resumo:

Small-scale farmers in the Chipata District of Zambia rely on their farm fields to grow maize and groundnuts for food security. Cotton production and surplus food security crops are used to generate income to provide for their families. With increasing population pressure, available land has decreased and farmers struggle to provide the necessary food requirements and income to meet their family’s needs. The purpose of the study was to determine how a farmer can best allocate his land to produce maize, groundnuts and cotton when constrained by labor and capital resources to generate the highest potential for food security and financial gains. Data from the 2008-2009 growing season was compiled and analyzed using a linear programming model. The study determined that farmers make the most profit by allocating all additional land and resources to cotton after meeting their minimum food security requirements. The study suggests growing cotton is a beneficial practice for small-scale subsistence farmers to generate income when restricted by limited resources.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This research is a study of the use of capital budgeting methods for investment decisions. It uses both the traditional methods and the newly introduced approach called the real options analysis to make a decision. The research elucidates how capital budgeting can be done when analysts encounter projects with high uncertainty and are capital intensive, for example oil and gas production. It then uses the oil and gas find in Ghana as a case study to support its argument. For a clear understanding a thorough literature review was done, which highlights the advantages and disadvantages of both methods. The revenue that the project will generate and the costs of production were obtained from the predictions by analysts from GNPC and compared to others experts’ opinion. It then applied both the traditional and real option valuation on the oil and gas find in Ghana to determine the project’s feasibility. Although, there are some short falls in real option analysis that are presented in this research, it is still helpful in valuing projects that are capital intensive with high volatility due to the strategic flexibility management possess in their decision making. It also suggests that traditional methods of evaluation should still be maintained and be used to value projects that have no options or those with options yet the options do not have significant impact on the project. The research points out the economic ripples the production of oil and gas will have on Ghana’s economy should the project be undertaken. These ripples include economic growth, massive job creation and reduction of the balance of trade deficit for the country. The long run effect is an eventually improvement of life of the citizens. It is also belief that the production of gas specifically can be used to generate electricity in Ghana which would enable the country to have a more stable and reliable power source necessary to attract more foreign direct investment.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The microalga Haematococcus pluvialis was cultivated in MES-volvox medium at various light intensities and CO2 concentrations. It was found that CO2 concentrations of 10 and 15%, in combination with high irradiance at initial pH =6.7, accelerate astaxanthin accumulation in H. pluvialis cells but obstruct cell growth. The purpose of this research study was to devise a one-stage process consisting of the simultaneous cultivation of H. pluvialis and astaxanthin production using high light intensity and high CO2 concentration. This could be achieved at 200 µE/m2s and 15% CO2 in growth medium at initial pH = 4.3. Compared to the traditional two-stage H. pluvialis cultivation system, this one-step process can save up to 8-9 days of astaxanthin production time. The astaxanthin content in H. pluvialis cells induced with high light intensity only or with a combination of high light intensity and high CO2 concentration had comparable astaxanthin content; 94 and 97 mg/g dry biomass, respectively. However, it was extremely low in nitrate-free medium at high irradiance alone or combined with high CO2 concentration, with an average value of 4 mg/g dry biomass. Cell density was 40% less in cultures under discontinuous illumination compared to continuous illumination. This process could serve as a microalgal CO2 mitigation system after further understanding of the CO2 fixation ability of H. pluvialis has been gained.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Agroforestry parklands represent a vast majority of the agricultural landscape under subsistent-oriented farming in semi-arid West Africa. Parklands are characterized by the growth of well- maintained trees (e.g., shea) on cultivated fields as a result of both environmental and human influences. Shea (Vitellaria paradoxa) provides a cultural and economic benefit to the local people of Ghana, especially women. Periods between traditional fallow rotation systems have reduced recently due to agricultural development and a demand for higher production. As a result, shea trees, which regenerate during fallow periods, has decreased over the landscape. The aim of this study was to determine beneficial spatial distributions of V. paradoxa to maintain high yields of staple crops, and how management of V. paradoxa will differ between male and female farmers as a result of farmer based needs and use of shea. Vegetation growth and grain yield of maize (Zea mays) associated with individual trees, clumped trees, and open fields were measured. Soil moisture and light availability were also measured to determine how V. paradoxa affected resource availability of maize in either clumped or scattered distributions of V. paradoxa. As expected, light availability increased as measurement locations moved farther away from all trees. However, soil moisture was actually greater under trees in clumps than under individual trees. Maize stalk height and cob length showed no difference between clumped and single trees at each measurement location. Grain yield per plot and per cob increased as measurement locations moved farther from single trees, but was actually greater near clumped trees that in the open field subplots. Cob length and maize stalk height increased with greater light availability, but grain yield per cob or per plot showed no relationship with light, but were not affected by soil moisture. Conversely, grain yield increased with increasing soil moisture, but had no relationship with light availability. Initial farming capital is the largest constraint to female farmers; therefore the collection of shea can help provide women with added income that could meet their specific farming needs. Our data indicate that overall effects of maintaining clumped distributions of V. paradoxa provided beneficial microclimates for staple crops when compared to single trees. It is recommended that male and female farmers allow shea to grow in clumped spatial distributions rather than maintaining scattered, individual trees.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The dual problems of sustaining the fast growth of human society and preserving the environment for future generations urge us to shift our focus from exploiting fossil oils to researching and developing more affordable, reliable and clean energy sources. Human beings had a long history that depended on meeting our energy demands with plant biomass, and the modern biorefinery technologies realize the effective conversion of biomass to production of transportation fuels, bulk and fine chemicals so to alleviate our reliance on fossil fuel resources of declining supply. With the aim of replacing as much non-renewable carbon from fossil oils with renewable carbon from biomass as possible, innovative R&D activities must strive to enhance the current biorefinery process and secure our energy future. Much of my Ph.D. research effort is centered on the study of electrocatalytic conversion of biomass-derived compounds to produce value-added chemicals, biofuels and electrical energy on model electrocatalysts in AEM/PEM-based continuous flow electrolysis cell and fuel cell reactors. High electricity generation performance was obtained when glycerol or crude glycerol was employed as fuels in AEMFCs. The study on selective electrocatalytic oxidation of glycerol shows an electrode potential-regulated product distribution where tartronate and mesoxalate can be selectively produced with electrode potential switch. This finding then led to the development of AEMFCs with selective production of valuable tartronate or mesoxalate with high selectivity and yield and cogeneration of electricity. Reaction mechanisms of electrocatalytic oxidation of ethylene glycol and 1,2-propanediol were further elucidated by means of an on-line sample collection technique and DFT modeling. Besides electro-oxidation of biorenewable alcohols to chemicals and electricity, electrocatalytic reduction of keto acids (e.g. levulinic acid) was also studied for upgrading biomass-based feedstock to biofuels while achieving renewable electricity storage. Meanwhile, ORR that is often coupled in AEMFCs on the cathode was investigated on non-PGM electrocatalyst with comparable activity to commercial Pt/C. The electro-biorefinery process could be coupled with traditional biorefinery operation and will play a significant role in our energy and chemical landscape.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The main objective of this research was to investigate pyrolysis and torrefaction of forest biomass species using a micropyrolysis instrument. It was found that 30-45% of the original sample mass remained as bio-char in the pyrolysis temperature range of 500 - 700˚C for aspen, balsam, and switchgrass. The non-char mass was converted to gaseous and vapor products, of which 10-55% was water and syngas, 2-12% to acetic acid, 2-12% to hydroxypropanone, 1-3% to furaldehyde, and 5-15% to various phenolic compounds. In addition, several general trends in the evolution of gaseous species were indentified when woody feedstocks were pyrolyzed. With increasing temperature it was observed that: (1) the volume of gas produced increased, (2) the volume of CO2 decreased and the volumes of CO and CH4 increased, and (3) the rates of gas evolution increased. In the range of torrefaction temperature (200 - 300˚C), two mechanistic models were developed to predict the rates of CO2 and acetic acid product formation. The models fit the general trend of the experimental data well, but suggestions for future improvement were also noted. Finally, it was observed that using torrefaction as a pre-curser to pyrolysis improves the quality of bio-oil over traditional pyrolysis by reducing the acidity through removal of acetic acid, reducing the O/C ratio by removal of some oxygenated species, and removing a portion of the water.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The purpose of this study is to examine the importance of the wild edible weed tasba (Senna obtusifolia) in Sanguéré Paul, Cameroon by examining how households use and manage the plant. This study found that local management of tasba is minimal compared to other traditional vegetables. Tasba was collected most frequently from en brousse or the communal, fallowed land which is often too degraded for traditional field crops to grow. Women subsistence farmers were closely involved with tasba as they are the ones responsible for food production within the family. Socioeconomic differences between women affects how they manage tasba and other vegetables to form a livelihood strategy to achieve food security within the family. Modifications and changes in management and use of tasba are influenced by time, proximity and income based on her perspective, preferences and resources available. Overall, tasba is an integral part of the traditional food system in Sanguéré Paul, and can play a role in the uncertain ecological and social setting of northern Cameroon.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Hardboard processing wastewater was evaluated as a feedstock in a bio refinery co-located with the hardboard facility for the production of fuel grade ethanol. A thorough characterization was conducted on the wastewater and the composition changes of which during the process in the bio refinery were tracked. It was determined that the wastewater had a low solid content (1.4%), and hemicellulose was the main component in the solid, accounting for up to 70%. Acid pretreatment alone can hydrolyze the majority of the hemicellulose as well as oligomers, and over 50% of the monomer sugars generated were xylose. The percentage of lignin remained in the liquid increased after acid pretreatment. The characterization results showed that hardboard processing wastewater is a feasible feedstock for the production of ethanol. The optimum conditions to hydrolyze hemicellulose into fermentable sugars were evaluated with a two-stage experiment, which includes acid pretreatment and enzymatic hydrolysis. The experimental data were fitted into second order regression models and Response Surface Methodology (RSM) was employed. The results of the experiment showed that for this type of feedstock enzymatic hydrolysis is not that necessary. In order to reach a comparatively high total sugar concentration (over 45g/l) and low furfural concentration (less than 0.5g/l), the optimum conditions were reached when acid concentration was between 1.41 to 1.81%, and reaction time was 48 to 76 minutes. The two products produced from the bio refinery were compared with traditional products, petroleum gasoline and traditional potassium acetate, in the perspective of sustainability, with greenhouse gas (GHG) emission as an indicator. Three allocation methods, system expansion, mass allocation and market value allocation methods were employed in this assessment. It was determined that the life cycle GHG emissions of ethanol were -27.1, 20.8 and 16 g CO2 eq/MJ, respectively, in the three allocation methods, whereas that of petroleum gasoline is 90 g CO2 eq/MJ. The life cycle GHG emissions of potassium acetate in mass allocation and market value allocation method were 555.7 and 716.0 g CO2 eq/kg, whereas that of traditional potassium acetate is 1020 g CO2/kg.