5 resultados para Total Time
em Digital Commons - Michigan Tech
Resumo:
We used the Green's functions from auto-correlations and cross-correlations of seismic ambient noise to monitor temporal velocity changes in the subsurface at Villarrica volcano in the Southern Andes of Chile. Campaigns were conducted from March to October 2010 and February to April 2011 with 8 broadband and 6 short-period stations, respectively. We prepared the data by removing the instrument response, normalizing with a root-mean-square method, whitening the spectra, and filtering from 1 to 10 Hz. This frequency band was chosen based on the relatively high background noise level in that range. Hour-long auto- and cross-correlations were computed and the Green's functions stacked by day and total time. To track the temporal velocity changes we stretched a 24 hour moving window of correlation functions from 90% to 110% of the original and cross correlated them with the total stack. All of the stations' auto-correlations detected what is interpreted as an increase in velocity in 2010, with an average increase of 0.13%. Cross-correlations from station V01, near the summit, to the other stations show comparable changes that are also interpreted as increases in velocity. We attribute this change to the closing of cracks in the subsurface due either to seasonal snow loading or regional tectonics. In addition to the common increase in velocity across the stations, there are excursions in velocity on the same order lasting several days. Amplitude decreases as the station's distance from the vent increases suggesting these excursions may be attributed to changes within the volcanic edifice. In at least two occurrences the amplitudes at stations V06 and V07, the stations farthest from the vent, are smaller. Similar short temporal excursions were seen in the auto-correlations from 2011, however, there was little to no increase in the overall velocity.
Resumo:
Nearly 22 million Americans operate as shift workers, and shift work has been linked to the development of cardiovascular disease (CVD). This study is aimed at identifying pivotal risk factors of CVD by assessing 24 hour ambulatory blood pressure, state anxiety levels and sleep patterns in 12 hour fixed shift workers. We hypothesized that night shift work would negatively affect blood pressure regulation, anxiety levels and sleep patterns. A total of 28 subjects (ages 22-60) were divided into two groups: 12 hour fixed night shift workers (n=15) and 12 hour fixed day shift workers (n=13). 24 hour ambulatory blood pressure measurements (Space Labs 90207) were taken twice: once during a regular work day and once on a non-work day. State anxiety levels were assessed on both test days using the Speilberger’s State Trait Anxiety Inventory. Total sleep time (TST) was determined using self recorded sleep diary. Night shift workers demonstrated increases in 24 hour systolic (122 ± 2 to 126 ± 2 mmHg, P=0.012); diastolic (75 ± 1 to 79 ± 2 mmHg, P=0.001); and mean arterial pressures (90 ± 2 to 94 ± 2mmHg, P<0.001) during work days compared to off days. In contrast, 24 hour blood pressures were similar during work and off days in day shift workers. Night shift workers reported less TST on work days versus off days (345 ± 16 vs. 552 ± 30 min; P<0.001), whereas day shift workers reported similar TST during work and off days (475 ± 16 minutes to 437 ± 20 minutes; P=0.231). State anxiety scores did not differ between the groups or testing days (time*group interaction P=0.248), suggesting increased 24 hour blood pressure during night shift work is related to decreased TST, not short term anxiety. Our findings suggest that fixed night shift work causes disruption of the normal sleep-wake cycle negatively affecting acute blood pressure regulation, which may increase the long-term risk for CVD.
Resumo:
The time course of lake recovery after a reduction in external loading of nutrients is often controlled by conditions in the sediment. Remediation of eutrophication is hindered by the presence of legacy organic carbon deposits, that exert a demand on the terminal electron acceptors of the lake and contribute to problems such as internal nutrient recycling, absence of sediment macrofauna, and flux of toxic metal species into the water column. Being able to quantify the timing of a lake’s response requires determination of the magnitude and lability, i.e., the susceptibility to biodegradation, of the organic carbon within the legacy deposit. This characterization is problematic for organic carbon in sediments because of the presence of different fractions of carbon, which vary from highly labile to refractory. The lability of carbon under varied conditions was tested with a bioassay approach. It was found that the majority of the organic material found in the sediments is conditionally-labile, where mineralization potential is dependent on prevailing conditions. High labilities were noted under oxygenated conditions and a favorable temperature of 30 °C. Lability decreased when oxygen was removed, and was further reduced when the temperature was dropped to the hypolimnetic average of 8° C . These results indicate that reversible preservation mechanisms exist in the sediment, and are able to protect otherwise labile material from being mineralized under in situ conditions. The concept of an active sediment layer, a region in the sediments in which diagenetic reactions occur (with nothing occurring below it), was examined through three lines of evidence. Initially, porewater profiles of oxygen, nitrate, sulfate/total sulfide, ETSA (Electron Transport System Activity- the activity of oxygen, nitrate, iron/manganese, and sulfate), and methane were considered. It was found through examination of the porewater profiles that the edge of diagenesis occurred around 15-20 cm. Secondly, historical and contemporary TOC profiles were compared to find the point at which the profiles were coincident, indicating the depth at which no change has occurred over the (13 year) interval between core collections. This analysis suggested that no diagenesis has occurred in Onondaga Lake sediment below a depth of 15 cm. Finally, the time to 99% mineralization, the t99, was viewed by using a literature estimate of the kinetic rate constant for diagenesis. A t99 of 34 years, or approximately 30 cm of sediment depth, resulted for the slowly decaying carbon fraction. Based on these three lines of evidence , an active sediment layer of 15-20 cm is proposed for Onondaga Lake, corresponding to a time since deposition of 15-20 years. While a large legacy deposit of conditionally-labile organic material remains in the sediments of Onondaga Lake, it becomes clear that preservation, mechanisms that act to shield labile organic carbon from being degraded, protects this material from being mineralized and exerting a demand on the terminal electron acceptors of the lake. This has major implications for management of the lake, as it defines the time course of lake recovery following a reduction in nutrient loading.
Resumo:
This study develops an automated analysis tool by combining total internal reflection fluorescence microscopy (TIRFM), an evanescent wave microscopic imaging technique to capture time-sequential images and the corresponding image processing Matlab code to identify movements of single individual particles. The developed code will enable us to examine two dimensional hindered tangential Brownian motion of nanoparticles with a sub-pixel resolution (nanoscale). The measured mean square displacements of nanoparticles are compared with theoretical predictions to estimate particle diameters and fluid viscosity using a nonlinear regression technique. These estimated values will be confirmed by the diameters and viscosities given by manufacturers to validate this analysis tool. Nano-particles used in these experiments are yellow-green polystyrene fluorescent nanospheres (200 nm, 500 nm and 1000 nm in diameter (nominal); 505 nm excitation and 515 nm emission wavelengths). Solutions used in this experiment are de-ionized (DI) water, 10% d-glucose and 10% glycerol. Mean square displacements obtained near the surface shows significant deviation from theoretical predictions which are attributed to DLVO forces in the region but it conforms to theoretical predictions after ~125 nm onwards. The proposed automation analysis tool will be powerfully employed in the bio-application fields needed for examination of single protein (DNA and/or vesicle) tracking, drug delivery, and cyto-toxicity unlike the traditional measurement techniques that require fixing the cells. Furthermore, this tool can be also usefully applied for the microfluidic areas of non-invasive thermometry, particle tracking velocimetry (PTV), and non-invasive viscometry.
Resumo:
The number of record-breaking events expected to occur in a strictly stationary time-series depends only on the number of values in the time-series, regardless of distribution. This holds whether the events are record-breaking highs or lows and whether we count from past to present or present to past. However, these symmetries are broken in distinct ways by trends in the mean and variance. We define indices that capture this information and use them to detect weak trends from multiple time-series. Here, we use these methods to answer the following questions: (1) Is there a variability trend among globally distributed surface temperature time-series? We find a significant decreasing variability over the past century for the Global Historical Climatology Network (GHCN). This corresponds to about a 10% change in the standard deviation of inter-annual monthly mean temperature distributions. (2) How are record-breaking high and low surface temperatures in the United States affected by time period? We investigate the United States Historical Climatology Network (USHCN) and find that the ratio of record-breaking highs to lows in 2006 increases as the time-series extend further into the past. When we consider the ratio as it evolves with respect to a fixed start year, we find it is strongly correlated with the ensemble mean. We also compare the ratios for USHCN and GHCN (minus USHCN stations). We find the ratios grow monotonically in the GHCN data set, but not in the USHCN data set. (3) Do we detect either mean or variance trends in annual precipitation within the United States? We find that the total annual and monthly precipitation in the United States (USHCN) has increased over the past century. Evidence for a trend in variance is inconclusive.