4 resultados para Too Big To Fail

em Digital Commons - Michigan Tech


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Due to their high thermal efficiency, diesel engines have excellent fuel economy and have been widely used as a power source for many vehicles. Diesel engines emit less greenhouse gases (carbon dioxide) compared with gasoline engines. However, diesel engines emit large amounts of particulate matter (PM) which can imperil human health. The best way to reduce the particulate matter is by using the Diesel Particulate Filter (DPF) system which consists of a wall-flow monolith which can trap particulates, and the DPF can be periodically regenerated to remove the collected particulates. The estimation of the PM mass accumulated in the DPF and total pressure drop across the filter are very important in order to determine when to carry out the active regeneration for the DPF. In this project, by developing a filtration model and a pressure drop model, we can estimate the PM mass and the total pressure drop, then, these two models can be linked with a regeneration model which has been developed previously to predict when to regenerate the filter. There results of this project were: 1 Reproduce a filtration model and simulate the processes of filtration. By studying the deep bed filtration and cake filtration, stages and quantity of mass accumulated in the DPF can be estimated. It was found that the filtration efficiency increases faster during the deep-bed filtration than that during the cake filtration. A “unit collector” theory was used in our filtration model which can explain the mechanism of the filtration very well. 2 Perform a parametric study on the pressure drop model for changes in engine exhaust flow rate, deposit layer thickness, and inlet temperature. It was found that there are five primary variables impacting the pressure drop in the DPF which are temperature gradient along the channel, deposit layer thickness, deposit layer permeability, wall thickness, and wall permeability. 3 Link the filtration model and the pressure drop model with the regeneration model to determine the time to carry out the regeneration of the DPF. It was found that the regeneration should be initiated when the cake layer is at a certain thickness, since a cake layer with either too big or too small an amount of particulates will need more thermal energy to reach a higher regeneration efficiency. 4 Formulate diesel particulate trap regeneration strategies for real world driving conditions to find out the best desirable conditions for DPF regeneration. It was found that the regeneration should be initiated when the vehicle’s speed is high and during which there should not be any stops from the vehicle. Moreover, the regeneration duration is about 120 seconds and the inlet temperature for the regeneration is 710K.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Virtually every sector of business and industry that uses computing, including financial analysis, search engines, and electronic commerce, incorporate Big Data analysis into their business model. Sophisticated clustering algorithms are popular for deducing the nature of data by assigning labels to unlabeled data. We address two main challenges in Big Data. First, by definition, the volume of Big Data is too large to be loaded into a computer’s memory (this volume changes based on the computer used or available, but there is always a data set that is too large for any computer). Second, in real-time applications, the velocity of new incoming data prevents historical data from being stored and future data from being accessed. Therefore, we propose our Streaming Kernel Fuzzy c-Means (stKFCM) algorithm, which reduces both computational complexity and space complexity significantly. The proposed stKFCM only requires O(n2) memory where n is the (predetermined) size of a data subset (or data chunk) at each time step, which makes this algorithm truly scalable (as n can be chosen based on the available memory). Furthermore, only 2n2 elements of the full N × N (where N >> n) kernel matrix need to be calculated at each time-step, thus reducing both the computation time in producing the kernel elements and also the complexity of the FCM algorithm. Empirical results show that stKFCM, even with relatively very small n, can provide clustering performance as accurately as kernel fuzzy c-means run on the entire data set while achieving a significant speedup.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Habitat selection has been one of the main research topics in ecology for decades. Nevertheless, many aspects of habitat selection still need to be explored. In particular, previous studies have overlooked the importance of temporal variation in habitat selection and the value of including data on reproductive success in order to describe the best quality habitat for a species. We used data collected from radiocollared wolves in Yellowstone National Park (USA), between 1996 and 2008, to describe wolf habitat selection. In particular, we aimed to identify i) seasonal differences in wolf habitat selection, ii) factors influencing interannual variation in habitat selection, and iii) the effect of habitat selection on wolf reproductive success. We used probability density functions to describe wolf habitat use and habitat coverages to represent the habitat available to wolves. We used regression analysis to connect habitat use with habitat characteristics and habitat selection with reproductive success. Our most relevant result was discovering strong interannual variability in wolf habitat selection. This variability was in part explained by pack identity and differences in litter size and leadership of a pack between two years (summer) and in pack size and precipitation (winter). We also detected some seasonal differences. Wolves selected open habitats, intermediate elevations, intermediate distances from roads, and avoided steep slopes in late winter. They selected areas close to roads and avoided steep slopes in summer. In early winter, wolves selected wetlands, herbaceous and shrub vegetation types, and areas at intermediate elevation and distance from roads. Surprisingly, the habitat characteristics selected by wolves were not useful in predicting reproductive success. We hypothesize that interannual variability in wolf habitat selection may be too strong to detect effects on reproductive success. Moreover, prey availability and competitor pressure may also have an influence on wolf reproductive success, which we did not assess. This project demonstrated how important temporal variation is in shaping patterns of habitat selection. We still believe in the value of running long-term studies, but the effect of temporal variation should always be taken into account.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Membrane filtration has become an accepted technology for the removal of pathogens from drinking water. Viruses, known to contaminate water supplies, are too small to be removed by a size-exclusion mechanism without a large energy penalty. Thus, functionalized electrospun membranes that can adsorb viruses have drawn our interest. We chose a quaternized chitosan derivative (HTCC) which carries a positively-charged quaternary amine, known to bind negatively-charged virus particles, as a functionalized membrane material. The technique of electrospinning was utilized to produce nanofiber mats with large pore diameters to increase water flux and decrease membrane fouling. In this study, stable, functionalized, electrospun HTCC-PVA nanofibers that can remove 3.6 logs (99.97%) of a model virus, porcine parvovirus (PPV), from water by adsorption and filtration have been successfully produced. This technology has the potential to purify drinking water in undeveloped countries and reduce the number of deaths due to lack of sanitation.