5 resultados para Time and frequency autocorrelation

em Digital Commons - Michigan Tech


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The amount and type of ground cover is an important characteristic to measure when collecting soil disturbance monitoring data after a timber harvest. Estimates of ground cover and bare soil can be used for tracking changes in invasive species, plant growth and regeneration, woody debris loadings, and the risk of surface water runoff and soil erosion. A new method of assessing ground cover and soil disturbance was recently published by the U.S. Forest Service, the Forest Soil Disturbance Monitoring Protocol (FSDMP). This protocol uses the frequency of cover types in small circular (15cm) plots to compare ground surface in pre- and post-harvest condition. While both frequency and percent cover are common methods of describing vegetation, frequency has rarely been used to measure ground surface cover. In this study, three methods for assessing ground cover percent (step-point, 15cm dia. circular and 1x5m visual plot estimates) were compared to the FSDMP frequency method. Results show that the FSDMP method provides significantly higher estimates of ground surface condition for most soil cover types, except coarse wood. The three cover methods had similar estimates for most cover values. The FSDMP method also produced the highest value when bare soil estimates were used to model erosion risk. In a person-hour analysis, estimating ground cover percent in 15cm dia. plots required the least sampling time, and provided standard errors similar to the other cover estimates even at low sampling intensities (n=18). If ground cover estimates are desired in soil monitoring, then a small plot size (15cm dia. circle), or a step-point method can provide a more accurate estimate in less time than the current FSDMP method.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A new approach, the four-window technique, was developed to measure optical phase-space-time-frequency tomography (OPSTFT). The four-window technique is based on balanced heterodyne detection with two local oscillator (LO) fields. This technique can provide independent control of position, momentum, time and frequency resolution. The OPSTFT is a Wigner distribution function of two independent Fourier transform pairs, phase-space and time-frequency. The OPSTFT can be applied for early disease detection.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Target localization has a wide range of military and civilian applications in wireless mobile networks. Examples include battle-field surveillance, emergency 911 (E911), traffc alert, habitat monitoring, resource allocation, routing, and disaster mitigation. Basic localization techniques include time-of-arrival (TOA), direction-of-arrival (DOA) and received-signal strength (RSS) estimation. Techniques that are proposed based on TOA and DOA are very sensitive to the availability of Line-of-sight (LOS) which is the direct path between the transmitter and the receiver. If LOS is not available, TOA and DOA estimation errors create a large localization error. In order to reduce NLOS localization error, NLOS identifcation, mitigation, and localization techniques have been proposed. This research investigates NLOS identifcation for multiple antennas radio systems. The techniques proposed in the literature mainly use one antenna element to enable NLOS identifcation. When a single antenna is utilized, limited features of the wireless channel can be exploited to identify NLOS situations. However, in DOA-based wireless localization systems, multiple antenna elements are available. In addition, multiple antenna technology has been adopted in many widely used wireless systems such as wireless LAN 802.11n and WiMAX 802.16e which are good candidates for localization based services. In this work, the potential of spatial channel information for high performance NLOS identifcation is investigated. Considering narrowband multiple antenna wireless systems, two xvNLOS identifcation techniques are proposed. Here, the implementation of spatial correlation of channel coeffcients across antenna elements as a metric for NLOS identifcation is proposed. In order to obtain the spatial correlation, a new multi-input multi-output (MIMO) channel model based on rough surface theory is proposed. This model can be used to compute the spatial correlation between the antenna pair separated by any distance. In addition, a new NLOS identifcation technique that exploits the statistics of phase difference across two antenna elements is proposed. This technique assumes the phases received across two antenna elements are uncorrelated. This assumption is validated based on the well-known circular and elliptic scattering models. Next, it is proved that the channel Rician K-factor is a function of the phase difference variance. Exploiting Rician K-factor, techniques to identify NLOS scenarios are proposed. Considering wideband multiple antenna wireless systems which use MIMO-orthogonal frequency division multiplexing (OFDM) signaling, space-time-frequency channel correlation is exploited to attain NLOS identifcation in time-varying, frequency-selective and spaceselective radio channels. Novel NLOS identi?cation measures based on space, time and frequency channel correlation are proposed and their performances are evaluated. These measures represent a better NLOS identifcation performance compared to those that only use space, time or frequency.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Dynamic spectrum access (DSA) aims at utilizing spectral opportunities both in time and frequency domains at any given location, which arise due to variations in spectrum usage. Recently, Cognitive radios (CRs) have been proposed as a means of implementing DSA. In this work we focus on the aspect of resource management in overlaid CRNs. We formulate resource allocation strategies for cognitive radio networks (CRNs) as mathematical optimization problems. Specifically, we focus on two key problems in resource management: Sum Rate Maximization and Maximization of Number of Admitted Users. Since both the above mentioned problems are NP hard due to presence of binary assignment variables, we propose novel graph based algorithms to optimally solve these problems. Further, we analyze the impact of location awareness on network performance of CRNs by considering three cases: Full location Aware, Partial location Aware and Non location Aware. Our results clearly show that location awareness has significant impact on performance of overlaid CRNs and leads to increase in spectrum utilization effciency.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The capability to detect combustion in a diesel engine has the potential of being an important control feature to meet increasingly stringent emission regulations, develop alternative combustion strategies, and use of biofuels. In this dissertation, block mounted accelerometers were investigated as potential feedback sensors for detecting combustion characteristics in a high-speed, high pressure common rail (HPCR), 1.9L diesel engine. Accelerometers were positioned in multiple placements and orientations on the engine, and engine testing was conducted under motored, single and pilot-main injection conditions. Engine tests were conducted at varying injection timings, engine loads, and engine speeds to observe the resulting time and frequency domain changes of the cylinder pressure and accelerometer signals. The frequency content of the cylinder pressure based signals and the accelerometer signals between 0.5 kHz and 6 kHz indicated a strong correlation with coherence values of nearly 1. The accelerometers were used to produce estimated combustion signals using the Frequency Response Functions (FRF) measured from the frequency domain characteristics of the cylinder pressure signals and the response of the accelerometers attached to the engine block. When compared to the actual combustion signals, the estimated combustion signals produced from the accelerometer response had Root Mean Square Errors (RMSE) between 7% and 25% of the actual signals peak value. Weighting the FRF’s from multiple test conditions along their frequency axis with the coherent output power reduced the median RMSE of the estimated combustion signals and the 95th percentile of RMSE produced from each test condition. The RMSE’s of the magnitude based combustion metrics including peak cylinder pressure, MPG, peak ROHR, and work estimated from the combustion signals produced by the accelerometer responses were between 15% and 50% of their actual value. The MPG measured from the estimated pressure gradient shared a direct relationship to the actual MPG. The location based combustion metrics such as the location of peak values and burn durations were capable of RMSE measurements as low as 0.9°. Overall, accelerometer based combustion sensing system was capable of detecting combustion and providing feedback regarding the in cylinder combustion process