3 resultados para Tiffany and Co.
em Digital Commons - Michigan Tech
Resumo:
Experimental warming provides a method to determine how an ecosystem will respond to increased temperatures. Northern peatland ecosystems, sensitive to changing climates, provide an excellent setting for experimental warming. Storing great quantities of carbon, northern peatlands play a critical role in regulating global temperatures. Two of the most common methods of experimental warming include open top chambers (OTCs) and infrared (IR) lamps. These warming systems have been used in many ecosystems throughout the world, yet their efficacy to create a warmer environment is variable and has not been widely studied. To date, there has not been a direct, experimentally controlled comparison of OTCs and IR lamps. As a result, a factorial study was implemented to compare the warming efficacy of OTCs and IR lamps and to examine the resulting carbon dioxide (CO2) and methane (CH4) flux rates in a Lake Superior peatland. IR lamps warmed the ecosystem on average by 1-2 #°C, with the majority of warming occurring during nighttime hours. OTC's did not provide any long-term warming above control plots, which is contrary to similar OTC studies at high latitudes. By investigating diurnal heating patterns and micrometeorological variables, we were able to conclude that OTCs were not achieving strong daytime heating peaks and were often cooler than control plots during nighttime hours. Temperate day-length, cloudy and humid conditions, and latent heat loss were factors that inhibited OTC warming. There were no changes in CO2 flux between warming treatments in lawn plots. Gross ecosystem production was significantly greater in IR lamp-hummock plots, while ecosystem respiration was not affected. CH4 flux was not significantly affected by warming treatment. Minimal daytime heating differences, high ambient temperatures, decay resistant substrate, as well as other factors suppressed significant gas flux responses from warming treatments.
Resumo:
We investigate how declines in US emissions of CO and O3 precursors have impacted the lower free troposphere over the North Atlantic. We use seasonal observations for O3 and CO from the PICO-NARE project for the period covering 2001 to 2010. Observations are used to verify model output generated by the GEOS-Chem 3-D global chemical transport model. Additional satellite data for CO from AIRS/Aqua and for O3 from TES/Aura were also used to provide additional comparisons; particularly for fall, winter, and spring when PICO-NARE coverage is sparse. We find GEOS-Chem captures the seasonal cycle for CO and O3 well compared to PICO-NARE data. For CO, GEOS-Chem is biased low, particularly in spring which is in agreement with findings from previous studies. GEOS-Chem is 24.7 +/- 5.2 ppbv (1-σ) low compared to PICO-NARE summer CO data while AIRS is 14.2 +/- 6.6 ppbv high. AIRS does not show nearly as much variation as seen with GEOS-Chem or the Pico data, and goes from being lower than PICO-NARE data in winter and spring, to higher in summer and fall. Both TES and GEOS-Chem match the seasonal ozone cycle well for all seasons when compared with observations. Model results for O3 show GEOS-Chem is 6.67 +/- 2.63 ppbv high compared to PICO-NARE summer measurements and TES was 3.91 +/- 4.2 ppbv higher. Pico data, model results, and AIRS all show declines in CO and O3 for the summer period from 2001 to 2010. Limited availability of TES data prevents us from using it in trend analysis. For summer CO Pico, GEOS-Chem, and AIRS results show declines of 1.32, 0.368, and 0.548 ppbv/year respectively. For summer O3, Pico and GEOS-Chem show declines of -0.726 and -0.583 ppbv/year respectively. In other seasons, both model and AIRS show declining CO, particularly in the fall. GEOS-Chem results show a fall decline of 0.798 ppbv/year and AIRS shows a decline of 0.8372 ppbv/year. Winter and spring CO declines are 0.393 and 0.307 for GEOS-Chem, and 0.455 and 0.566 for AIRS. GEOS-Chem shows declining O3 in other seasons as well; with fall being the season of greatest decrease and winter being the least. Model results for fall, winter, and spring are 0.856, 0.117, and 0.570 ppbv/year respectively. Given the availability of data we are most confident in summer results and thus find that summer CO and O3 have declined in lower free troposphere of the North Atlantic region of the Azores. Sensitivity studies for CO and O3 at Pico were conducted by turning off North American fossil fuel emissions in GEOS-Chem. Model results show that North America fossil fuel emissions contribute 8.57 ppbv CO and 4.03 ppbv O3 to Pico. The magnitude of modeled trends declines in all seasons without North American fossil fuel emissions except for summer CO. The increase in summer CO declines may be due to a decline of 5.24 ppbv/year trend in biomass burning emissions over the study period; this is higher than the 2.33 ppbv/year North American anthropogenic CO model decline. Winter O3 is the only season which goes from showing a negative trend to a positive trend.
Resumo:
Hardboard processing wastewater was evaluated as a feedstock in a bio refinery co-located with the hardboard facility for the production of fuel grade ethanol. A thorough characterization was conducted on the wastewater and the composition changes of which during the process in the bio refinery were tracked. It was determined that the wastewater had a low solid content (1.4%), and hemicellulose was the main component in the solid, accounting for up to 70%. Acid pretreatment alone can hydrolyze the majority of the hemicellulose as well as oligomers, and over 50% of the monomer sugars generated were xylose. The percentage of lignin remained in the liquid increased after acid pretreatment. The characterization results showed that hardboard processing wastewater is a feasible feedstock for the production of ethanol. The optimum conditions to hydrolyze hemicellulose into fermentable sugars were evaluated with a two-stage experiment, which includes acid pretreatment and enzymatic hydrolysis. The experimental data were fitted into second order regression models and Response Surface Methodology (RSM) was employed. The results of the experiment showed that for this type of feedstock enzymatic hydrolysis is not that necessary. In order to reach a comparatively high total sugar concentration (over 45g/l) and low furfural concentration (less than 0.5g/l), the optimum conditions were reached when acid concentration was between 1.41 to 1.81%, and reaction time was 48 to 76 minutes. The two products produced from the bio refinery were compared with traditional products, petroleum gasoline and traditional potassium acetate, in the perspective of sustainability, with greenhouse gas (GHG) emission as an indicator. Three allocation methods, system expansion, mass allocation and market value allocation methods were employed in this assessment. It was determined that the life cycle GHG emissions of ethanol were -27.1, 20.8 and 16 g CO2 eq/MJ, respectively, in the three allocation methods, whereas that of petroleum gasoline is 90 g CO2 eq/MJ. The life cycle GHG emissions of potassium acetate in mass allocation and market value allocation method were 555.7 and 716.0 g CO2 eq/kg, whereas that of traditional potassium acetate is 1020 g CO2/kg.