3 resultados para Think tank

em Digital Commons - Michigan Tech


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The purpose of this study is to design, develop and integrate a Compressed Natural Gas (CNG) tank that will have a conformable shape for efficient storage in a light-duty pick-up truck. The CNG tank will be a simple rectangular box geometry to demonstrate capability of non-cylindrical shapes. Using CAD drawings of the truck, a conformable tank will be designed to fit under the pick-up bed. The intent of the non-cylindrical CNG tank is to demonstrate improvement in size over the current solution, which is a large cylinder in the box of a pick-up truck. The geometry of the tank’s features is critical to its size and strength. The optimized tank design will be simulated with Finite Element Analysis (FEA) to determine critical stress regions, and appropriate design changes will be made to reduce stress concentration. Following the American National Standard Institute (ANSI) guide, different aluminum alloys will be optimized to obtain the best possible result for the CNG tank.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

More than eighteen percent of the world’s population lives without reliable access to clean water, forced to walk long distances to get small amounts of contaminated surface water. Carrying heavy loads of water long distances and ingesting contaminated water can lead to long-term health problems and even death. These problems affect the most vulnerable populations, women, children, and the elderly, more than anyone else. Water access is one of the most pressing issues in development today. Boajibu, a small village in Sierra Leone, where the author served in Peace Corps for two years, lacks access to clean water. Construction of a water distribution system was halted when a civil war broke out in 1992 and has not been continued since. The community currently relies on hand-dug and borehole wells that can become dirty during the dry season, which forces people to drink contaminated water or to travel a far distance to collect clean water. This report is intended to provide a design the system as it was meant to be built. The water system design was completed based on the taps present, interviews with local community leaders, local surveying, and points taken with a GPS. The design is a gravity-fed branched water system, supplied by a natural spring on a hill adjacent to Boajibu. The system’s source is a natural spring on a hill above Boajibu, but the flow rate of the spring is unknown. There has to be enough flow from the spring over a 24-hour period to meet the demands of the users on a daily basis, or what is called providing continuous flow. If the spring has less than this amount of flow, the system must provide intermittent flow, flow that is restricted to a few hours a day. A minimum flow rate of 2.1 liters per second was found to be necessary to provide continuous flow to the users of Boajibu. If this flow is not met, intermittent flow can be provided to the users. In order to aid the construction of a distribution system in the absence of someone with formal engineering training, a table was created detailing water storage tank sizing based on possible source flow rates. A builder can interpolate using the source flow rate found to get the tank size from the table. However, any flow rate below 2.1 liters per second cannot be used in the table. In this case, the builder should size the tank such that it can take in the water that will be supplied overnight, as all the water will be drained during the day because the users will demand more than the spring can supply through the night. In the developing world, there is often a problem collecting enough money to fund large infrastructure projects, such as a water distribution system. Often there is only enough money to add only one or two loops to a water distribution system. It is helpful to know where these one or two loops can be most effectively placed in the system. Various possible loops were designated for the Boajibu water distribution system and the Adaptive Greedy Heuristic Loop Addition Selection Algorithm (AGHLASA) was used to rank the effectiveness of the possible loops to construct. Loop 1 which was furthest upstream was selected because it benefitted the most people for the least cost. While loops which were further downstream were found to be less effective because they would benefit fewer people. Further studies should be conducted on the water use habits of the people of Boajibu to more accurately predict the demands that will be placed on the system. Further population surveying should also be conducted to predict population change over time so that the appropriate capacity can be built into the system to accommodate future growth. The flow at the spring should be measured using a V-notch weir and the system adjusted accordingly. Future studies can be completed adjusting the loop ranking method so that two users who may be using the water system for different lengths of time are not counted the same and vulnerable users are weighted more heavily than more robust users.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Two of the indicators of the UN Millennium Development Goals ensuring environmental sustainability are energy use and per capita carbon dioxide emissions. The increasing urbanization and increasing world population may require increased energy use in order to transport enough safe drinking water to communities. In addition, the increase in water use would result in increased energy consumption, thereby resulting in increased green-house gas emissions that promote global climate change. The study of multiple Municipal Drinking Water Distribution Systems (MDWDSs) that relates various MDWDS aspects--system components and properties--to energy use is strongly desirable. The understanding of the relationship between system aspects and energy use aids in energy-efficient design. In this study, components of a MDWDS, and/or the characteristics associated with the component are termed as MDWDS aspects (hereafter--system aspects). There are many aspects of MDWDSs that affect the energy usage. Three system aspects (1) system-wide water demand, (2) storage tank parameters, and (3) pumping stations were analyzed in this study. The study involved seven MDWDSs to understand the relationship between the above-mentioned system aspects in relation with energy use. A MDWDSs model, EPANET 2.0, was utilized to analyze the seven systems. Six of the systems were real and one was a hypothetical system. The study presented here is unique in its statistical approach using seven municipal water distribution systems. The first system aspect studied was system-wide water demand. The analysis involved analyzing seven systems for the variation of water demand and its impact on energy use. To quantify the effects of water use reduction on energy use in a municipal water distribution system, the seven systems were modeled and the energy usage quantified for various amounts of water conservation. It was found that the effect of water conservation on energy use was linear for all seven systems and that all the average values of all the systems' energy use plotted on the same line with a high R 2 value. From this relationship, it can be ascertained that a 20% reduction in water demand results in approximately a 13% savings in energy use for all seven systems analyzed. This figure might hold true for many similar systems that are dominated by pumping and not gravity driven. The second system aspect analyzed was storage tank(s) parameters. Various tank parameters: (1) tank maximum water levels, (2) tank elevation, and (3) tank diameter were considered in this part of the study. MDWDSs use a significant amount of electrical energy for the pumping of water from low elevations (usually a source) to higher ones (usually storage tanks). The use of electrical energy has an effect on pollution emissions and, therefore, potential global climate change as well. Various values of these tank parameters were modeled on seven MDWDSs of various sizes using a network solver and the energy usage recorded. It was found that when averaged over all seven analyzed systems (1) the reduction of maximum tank water level by 50% results in a 2% energy reduction, (2) energy use for a change in tank elevation is system specific, and (2) a reduction of tank diameter of 50% results in approximately a 7% energy savings. The third system aspect analyzed in this study was pumping station parameters. A pumping station consists of one or more pumps. The seven systems were analyzed to understand the effect of the variation of pump horsepower and the number of booster stations on energy use. It was found that adding booster stations could save energy depending upon the system characteristics. For systems with flat topography, a single main pumping station was found to use less energy. In systems with a higher-elevation neighborhood, however, one or more booster pumps with a reduced main pumping station capacity used less energy. The energy savings for the seven systems was dependent on the number of boosters and ranged from 5% to 66% for the analyzed five systems with higher elevation neighborhoods (S3, S4, S5, S6, and S7). No energy savings was realized for the remaining two flat topography systems, S1, and S2. The present study analyzed and established the relationship between various system aspects and energy use in seven MDWDSs. This aids in estimating the amount of energy savings in MDWDSs. This energy savings would ultimately help reduce Greenhouse gases (GHGs) emissions including per capita CO 2 emissions thereby potentially lowering the global climate change effect. This will in turn contribute to meeting the MDG of ensuring environmental sustainability.