1 resultado para Thermal structure in the sea
em Digital Commons - Michigan Tech
Filtro por publicador
- Aberdeen University (3)
- Academic Research Repository at Institute of Developing Economies (1)
- Acceda, el repositorio institucional de la Universidad de Las Palmas de Gran Canaria. España (6)
- AMS Tesi di Dottorato - Alm@DL - Università di Bologna (4)
- AMS Tesi di Laurea - Alm@DL - Università di Bologna (2)
- Aquatic Commons (51)
- Archimer: Archive de l'Institut francais de recherche pour l'exploitation de la mer (7)
- Archive of European Integration (6)
- Archivo Digital para la Docencia y la Investigación - Repositorio Institucional de la Universidad del País Vasco (7)
- Aston University Research Archive (6)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (9)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP) (4)
- Biodiversity Heritage Library, United States (2)
- BORIS: Bern Open Repository and Information System - Berna - Suiça (10)
- Brock University, Canada (4)
- CaltechTHESIS (4)
- Cambridge University Engineering Department Publications Database (5)
- CentAUR: Central Archive University of Reading - UK (29)
- Chinese Academy of Sciences Institutional Repositories Grid Portal (53)
- Cochin University of Science & Technology (CUSAT), India (12)
- Comissão Econômica para a América Latina e o Caribe (CEPAL) (1)
- CORA - Cork Open Research Archive - University College Cork - Ireland (1)
- DI-fusion - The institutional repository of Université Libre de Bruxelles (2)
- Digital Archives@Colby (1)
- Digital Commons - Michigan Tech (1)
- Digital Commons at Florida International University (5)
- DigitalCommons - The University of Maine Research (3)
- DigitalCommons@The Texas Medical Center (1)
- DigitalCommons@University of Nebraska - Lincoln (3)
- Duke University (2)
- eResearch Archive - Queensland Department of Agriculture; Fisheries and Forestry (14)
- Helda - Digital Repository of University of Helsinki (38)
- Illinois Digital Environment for Access to Learning and Scholarship Repository (1)
- Indian Institute of Science - Bangalore - Índia (125)
- Institutional Repository of Leibniz University Hannover (1)
- Instituto Politécnico de Bragança (1)
- Instituto Superior de Psicologia Aplicada - Lisboa (1)
- Memorial University Research Repository (1)
- Ministerio de Cultura, Spain (1)
- National Center for Biotechnology Information - NCBI (17)
- Plymouth Marine Science Electronic Archive (PlyMSEA) (68)
- Portal de Revistas Científicas Complutenses - Espanha (2)
- Publishing Network for Geoscientific & Environmental Data (239)
- QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast (26)
- Queensland University of Technology - ePrints Archive (64)
- Repositório Científico da Universidade de Évora - Portugal (5)
- Repositório Digital da UNIVERSIDADE DA MADEIRA - Portugal (1)
- Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho" (37)
- SAPIENTIA - Universidade do Algarve - Portugal (5)
- Scientific Open-access Literature Archive and Repository (1)
- Universidad de Alicante (1)
- Universidad del Rosario, Colombia (1)
- Universidad Politécnica de Madrid (3)
- Universidade Complutense de Madrid (2)
- Universidade de Lisboa - Repositório Aberto (1)
- Universidade dos Açores - Portugal (1)
- Universitat de Girona, Spain (1)
- Université de Lausanne, Switzerland (2)
- University of Connecticut - USA (1)
- University of Michigan (9)
- University of Queensland eSpace - Australia (20)
- University of Washington (4)
Resumo:
We used active remote sensing technology to characterize forest structure in a northern temperate forest on a landscape- and local-level in the Upper Peninsula of Michigan. Specifically, we used a form of active remote sensing called light detection and ranging (e.g., LiDAR) to aid in the depiction of current forest structural stages and total canopy gap area estimation. On a landscape-level, LiDAR data are shown not only to be a useful tool in characterizing forest structure, in both coniferous and deciduous forest cover types, but also as an effective basis for data-driven surrogates for classification of forest structure. On a local-level, LiDAR data are shown to be a benchmark reference point to evaluate field-based canopy gap area estimations, due to the highly accurate nature of such remotely sensed data. The application of LiDAR remote sensed data can help facilitate current and future sustainable forest management.