1 resultado para Thermal structure in the sea
em Digital Commons - Michigan Tech
Filtro por publicador
- Aberdeen University (3)
- Academic Research Repository at Institute of Developing Economies (1)
- Acceda, el repositorio institucional de la Universidad de Las Palmas de Gran Canaria. España (6)
- AMS Tesi di Dottorato - Alm@DL - Università di Bologna (6)
- AMS Tesi di Laurea - Alm@DL - Università di Bologna (3)
- Aquatic Commons (9)
- Archimer: Archive de l'Institut francais de recherche pour l'exploitation de la mer (7)
- Archive of European Integration (13)
- Aston University Research Archive (6)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (9)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP) (54)
- Biodiversity Heritage Library, United States (13)
- BORIS: Bern Open Repository and Information System - Berna - Suiça (10)
- Brock University, Canada (8)
- CentAUR: Central Archive University of Reading - UK (124)
- CiencIPCA - Instituto Politécnico do Cávado e do Ave, Portugal (1)
- Cochin University of Science & Technology (CUSAT), India (37)
- Comissão Econômica para a América Latina e o Caribe (CEPAL) (1)
- Consorci de Serveis Universitaris de Catalunya (CSUC), Spain (56)
- Cor-Ciencia - Acuerdo de Bibliotecas Universitarias de Córdoba (ABUC), Argentina (1)
- Digital Archives@Colby (1)
- Digital Commons - Michigan Tech (1)
- Digital Commons at Florida International University (5)
- DigitalCommons - The University of Maine Research (3)
- DigitalCommons@The Texas Medical Center (1)
- DigitalCommons@University of Nebraska - Lincoln (3)
- Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland (42)
- Galway Mayo Institute of Technology, Ireland (2)
- Illinois Digital Environment for Access to Learning and Scholarship Repository (1)
- Institutional Repository of Leibniz University Hannover (1)
- Instituto Politécnico de Bragança (1)
- Instituto Politécnico do Porto, Portugal (1)
- Instituto Superior de Psicologia Aplicada - Lisboa (1)
- Iowa Publications Online (IPO) - State Library, State of Iowa (Iowa), United States (1)
- Memorial University Research Repository (1)
- Ministerio de Cultura, Spain (3)
- National Center for Biotechnology Information - NCBI (17)
- Portal de Revistas Científicas Complutenses - Espanha (1)
- Portal do Conhecimento - Ministerio do Ensino Superior Ciencia e Inovacao, Cape Verde (3)
- Publishing Network for Geoscientific & Environmental Data (239)
- Repositório Científico da Universidade de Évora - Portugal (5)
- Repositório Científico do Instituto Politécnico de Lisboa - Portugal (1)
- Repositório da Produção Científica e Intelectual da Unicamp (2)
- Repositório Digital da UNIVERSIDADE DA MADEIRA - Portugal (1)
- Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho" (37)
- RUN (Repositório da Universidade Nova de Lisboa) - FCT (Faculdade de Cienecias e Technologia), Universidade Nova de Lisboa (UNL), Portugal (3)
- SAPIENTIA - Universidade do Algarve - Portugal (4)
- Scielo Saúde Pública - SP (45)
- Scientific Open-access Literature Archive and Repository (1)
- Scottish Institute for Research in Economics (SIRE) (SIRE), United Kingdom (6)
- Universidad de Alicante (1)
- Universidad del Rosario, Colombia (3)
- Universidad Politécnica de Madrid (3)
- Universidade Complutense de Madrid (2)
- Universidade de Lisboa - Repositório Aberto (1)
- Universidade do Minho (6)
- Universidade dos Açores - Portugal (6)
- Universitat de Girona, Spain (3)
- Universitätsbibliothek Kassel, Universität Kassel, Germany (5)
- Université de Lausanne, Switzerland (60)
- Université de Montréal, Canada (2)
- University of Connecticut - USA (1)
- University of Michigan (9)
- University of Queensland eSpace - Australia (60)
- University of Washington (2)
Resumo:
We used active remote sensing technology to characterize forest structure in a northern temperate forest on a landscape- and local-level in the Upper Peninsula of Michigan. Specifically, we used a form of active remote sensing called light detection and ranging (e.g., LiDAR) to aid in the depiction of current forest structural stages and total canopy gap area estimation. On a landscape-level, LiDAR data are shown not only to be a useful tool in characterizing forest structure, in both coniferous and deciduous forest cover types, but also as an effective basis for data-driven surrogates for classification of forest structure. On a local-level, LiDAR data are shown to be a benchmark reference point to evaluate field-based canopy gap area estimations, due to the highly accurate nature of such remotely sensed data. The application of LiDAR remote sensed data can help facilitate current and future sustainable forest management.