2 resultados para Theoretical prediction

em Digital Commons - Michigan Tech


Relevância:

60.00% 60.00%

Publicador:

Resumo:

We present studies of the spatial clustering of inertial particles embedded in turbulent flow. A major part of the thesis is experimental, involving the technique of Phase Doppler Interferometry (PDI). The thesis also includes significant amount of simulation studies and some theoretical considerations. We describe the details of PDI and explain why it is suitable for study of particle clustering in turbulent flow with a strong mean velocity. We introduce the concept of the radial distribution function (RDF) as our chosen way of quantifying inertial particle clustering and present some original works on foundational and practical considerations related to it. These include methods of treating finite sampling size, interpretation of the magnitude of RDF and the possibility of isolating RDF signature of inertial clustering from that of large scale mixing. In experimental work, we used the PDI to observe clustering of water droplets in a turbulent wind tunnel. From that we present, in the form of a published paper, evidence of dynamical similarity (Stokes number similarity) of inertial particle clustering together with other results in qualitative agreement with available theoretical prediction and simulation results. We next show detailed quantitative comparisons of results from our experiments, direct-numerical-simulation (DNS) and theory. Very promising agreement was found for like-sized particles (mono-disperse). Theory is found to be incorrect regarding clustering of different-sized particles and we propose a empirical correction based on the DNS and experimental results. Besides this, we also discovered a few interesting characteristics of inertial clustering. Firstly, through observations, we found an intriguing possibility for modeling the RDF arising from inertial clustering that has only one (sensitive) parameter. We also found that clustering becomes saturated at high Reynolds number.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Many types of materials at nanoscale are currently being used in everyday life. The production and use of such products based on engineered nanomaterials have raised concerns of the possible risks and hazards associated with these nanomaterials. In order to evaluate and gain a better understanding of their effects on living organisms, we have performed first-principles quantum mechanical calculations and molecular dynamics simulations. Specifically, we will investigate the interaction of nanomaterials including semiconducting quantum dots and metallic nanoparticles with various biological molecules, such as dopamine, DNA nucleobases and lipid membranes. Firstly, interactions of semiconducting CdSe/CdS quantum dots (QDs) with the dopamine and the DNA nucleobase molecules are investigated using similar quantum mechanical approach to the one used for the metallic nanoparticles. A variety of interaction sites are explored. Our results show that small-sized Cd4Se4 and Cd4S4 QDs interact strongly with the DNA nucleobase if a DNA nucleobase has the amide or hydroxyl chemical group. These results indicate that these QDs are suitable for detecting subcellular structures, as also reported by experiments. The next two chapters describe a preparation required for the simulation of nanoparticles interacting with membranes leading to accurate structure models for the membranes. We develop a method for the molecular crystalline structure prediction of 1,2-Dimyristoyl-sn-glycero-3-phosphorylcholine (DMPC), 1,2-Dimyristoyl-sn-glycero-3-phosphorylethanolamine (DMPE) and cyclic di-amino acid peptide using first-principles methods. Since an accurate determination of the structure of an organic crystal is usually an extremely difficult task due to availability of the large number of its conformers, we propose a new computational scheme by applying knowledge of symmetry, structural chemistry and chemical bonding to reduce the sampling size of the conformation space. The interaction of metal nanoparticles with cell membranes is finally carried out by molecular dynamics simulations, and the results are reported in the last chapter. A new force field is developed which accurately describes the interaction forces between the clusters representing small-sized metal nanoparticles and the lipid bilayer molecules. The permeation of nanoparticles into the cell membrane is analyzed together with the RMSD values of the membrane modeled by a lipid bilayer. The simulation results suggest that the AgNPs could cause the same amount of deformation as the AuNPs for the dysfunction of the membrane.