2 resultados para The Folding Wife
em Digital Commons - Michigan Tech
Resumo:
Proteins are linear chain molecules made out of amino acids. Only when they fold to their native states, they become functional. This dissertation aims to model the solvent (environment) effect and to develop & implement enhanced sampling methods that enable a reliable study of the protein folding problem in silico. We have developed an enhanced solvation model based on the solution to the Poisson-Boltzmann equation in order to describe the solvent effect. Following the quantum mechanical Polarizable Continuum Model (PCM), we decomposed net solvation free energy into three physical terms– Polarization, Dispersion and Cavitation. All the terms were implemented, analyzed and parametrized individually to obtain a high level of accuracy. In order to describe the thermodynamics of proteins, their conformational space needs to be sampled thoroughly. Simulations of proteins are hampered by slow relaxation due to their rugged free-energy landscape, with the barriers between minima being higher than the thermal energy at physiological temperatures. In order to overcome this problem a number of approaches have been proposed of which replica exchange method (REM) is the most popular. In this dissertation we describe a new variant of canonical replica exchange method in the context of molecular dynamic simulation. The advantage of this new method is the easily tunable high acceptance rate for the replica exchange. We call our method Microcanonical Replica Exchange Molecular Dynamic (MREMD). We have described the theoretical frame work, comment on its actual implementation, and its application to Trp-cage mini-protein in implicit solvent. We have been able to correctly predict the folding thermodynamics of this protein using our approach.
Resumo:
In this report, we attempt to define the capabilities of the infrared satellite remote sensor, Multifunctional Transport Satellite-2 (MTSAT-2) (i.e. a geosynchronous instrument), in characterizing volcanic eruptive behavior in the highly active region of Indonesia. Sulfur dioxide data from NASA's Ozone Monitoring Instrument (OMI) (i.e. a polar orbiting instrument) are presented here for validation of the processes interpreted using the thermal infrared datasets. Data provided from two case studies are analyzed specifically for eruptive products producing large thermal anomalies (i.e. lava flows, lava domes, etc.), volcanic ash and SO2 clouds; three distinctly characteristic and abundant volcanic emissions. Two primary methods used for detection of heat signatures are used and compared in this report including, single-channel thermal radiance (4-µm) and the normalized thermal index (NTI) algorithm. For automated purposes, fixed thresholds must be determined for these methods. A base minimum detection limit (MDL) for single-channel thermal radiance of 2.30E+05 Wm- 2sr-1m-1 and -0.925 for NTI generate false alarm rates of 35.78% and 34.16%, respectively. A spatial comparison method, developed here specifically for use in Indonesia and used as a second parameter for detection, is implemented to address the high false alarm rate. For the single-channel thermal radiance method, the utilization of the spatial comparison method eliminated 100% of the false alarms while maintaining every true anomaly. The NTI algorithm showed similar results with only 2 false alarms remaining. No definitive difference is observed between the two thermal detection methods for automated use; however, the single-channel thermal radiance method coupled with the SO2 mass abundance data can be used to interpret volcanic processes including the identification of lava dome activity at Sinabung as well as the mechanism for the dome emplacement (i.e. endogenous or exogenous). Only one technique, the brightness temperature difference (BTD) method, is used for the detection of ash. Trends of ash area, water/ice area, and their respective concentrations yield interpretations of increased ice formation, aggregation, and sedimentation processes that only a high-temporal resolution instrument like the MTSAT-2 can analyze. A conceptual model of a secondary zone of aggregation occurring in the migrating Kelut ash cloud, which decreases the distal fine-ash component and hazards to flight paths, is presented in this report. Unfortunately, SO2 data was unable to definitively reinforce the concept of a secondary zone of aggregation due to the lack of a sufficient temporal resolution. However, a detailed study of the Kelut SO2 cloud is used to determine that there was no climatic impacts generated from this eruption due to the atmospheric residence times and e-folding rate of ~14 days for the SO2. This report applies the complementary assets offered by utilizing a high-temporal and a high-spatial resolution satellite, and it demonstrates that these two instruments can provide unparalleled observations of dynamic volcanic processes.