2 resultados para Temperature of Calcination
em Digital Commons - Michigan Tech
Resumo:
Tropical trees have been shown to be more susceptible to warming compared to temperate species, and have shown growth and photosynthetic declines at elevated temperatures as little as 3oC above ambient. However, regional and global vegetation models lack the data needed to accurately represent physiological response to increased temperatures in tropical forests. We compared the instantaneous photosynthetic responses to elevated temperatures of four mature tropical rainforest tree species in Puerto Rico and the temperate broadleaf species sugar maple (Acer saccharum) in Michigan. Contrary to expectations, leaves in the upper canopy of both temperate and tropical forests had temperature optima that are already exceeded by mean daily leaf temperatures. This indicates that tropical and temperate forests are already seeing photosynthesis decline at mid-day temperature. This decline may worsen as air temperatures rise with climate change if trees are unable to acclimate, increasing the likelihood that forests may shift from carbon sinks to sources. A secondary study was conducted on experimentally warmed sugar maple seedlings to determine if photosynthesis had been able to acclimate to +5oC air temperature over four years. Species abundance models had predicted a decline of sugar maple within the Upper Peninsula of Michigan over the next 100 years, due to elevated temperature and altered precipitation. Instantaneous photosynthetic temperature response curves on both control and heated seedlings showed that the differences between treatments were not statistically significant, though there was a 16% increase in temperature optima and a 3% increase in maximum rates of photosynthesis in warmed plots. Though evidence of acclimation was not significant, the seedlings did not fare poorly as the models suggest.
Resumo:
Global warming issue becomes more significant to human beings and other organisms on the earth. Among many greenhouse gases, carbon dioxide (CO2) has the largest contribution to global warming. To find an effective way to utilize the greenhouse gas is urgent. It is the best way to convert CO2 to useful compounds. CO2 reforming of methane is an attractive process to convert CO2 and methane into synthesis gas (CO/H2), which can be used as a feedstock for gasoline, methanol, and other hydrocarbons. Nickel and cobalt were found to have good activity for CO2 reforming. However, they have a poor stability due to carbon deposition. This research developed efficient Ni-Co solid solution catalysts with excellent activities and high stability for CO2 reforming of methane. First, the structure of binary oxide solid solution of nickel and cobalt was investigated. It was found that while the calcination of Ni(NO3)2 and Co(NO3)2 mixture with 1:1 molar ratio at a high temperature above 800 oC generated NiO-CoO solid solution, only Ni3O4-Co3O4 solid solution was observed after the calcination at a low temperature of 500 oC. Furthermore, if the calcination was carried out at a medium temperature arranged from 600 to 700 oC, both NiO-CoO and Ni3O4-Co3O4 solid solutions can be formed. This occurred because Co3O4 can induce the formation of Ni3O4, whereas NiO can stabilize CoO. In addition, the lattice parameter of Ni3O4, which was predicted by using Vegard’s Law, is 8.2054 Å. As a very important part of this dissertation, Ni-Co solid solution was evaluated as catalysts for CO2 reforming of methane. It was revealed that nickel-cobalt solid solution showed excellent catalytic performance and high stability for CO2 reforming of methane. However, the stability of Ni-Co solid solution catalysts is strongly dependent on their composition and preparation condition. The optimum composition is 50%Ni-50%Co. Furthermore, the structure of Ni-Co catalysts was characterized by XRD, Vvis, TPR, TPD, BET, AES, TEM, XANES and EXAFS. The relationship between the structure and the catalytic performance was established: (1) The reduced NiO-CoO solid solution possesses better catalytic performance and stability than the reduced Ni3O4-Co3O4 solid solution. (2) Ni is richer on surface in Ni-Co catalysts. And (3) the reduction of Ni-Co-O solid solution generated two types of particles, small and large particles. The small ones are dispersed on large ones as catalytic component.