3 resultados para Temperature increase

em Digital Commons - Michigan Tech


Relevância:

30.00% 30.00%

Publicador:

Resumo:

A phenomenological transition film evaporation model was introduced to a pore network model with the consideration of pore radius, contact angle, non-isothermal interface temperature, microscale fluid flows and heat and mass transfers. This was achieved by modeling the transition film region of the menisci in each pore throughout the porous transport layer of a half-cell polymer electrolyte membrane (PEM) fuel cell. The model presented in this research is compared with the standard diffusive fuel cell modeling approach to evaporation and shown to surpass the conventional modeling approach in terms of predicting the evaporation rates in porous media. The current diffusive evaporation models used in many fuel cell transport models assumes a constant evaporation rate across the entire liquid-air interface. The transition film model was implemented into the pore network model to address this issue and create a pore size dependency on the evaporation rates. This is accomplished by evaluating the transition film evaporation rates determined by the kinetic model for every pore containing liquid water in the porous transport layer (PTL). The comparison of a transition film and diffusive evaporation model shows an increase in predicted evaporation rates for smaller pore sizes with the transition film model. This is an important parameter when considering the micro-scaled pore sizes seen in the PTL and becomes even more substantial when considering transport in fuel cells containing an MPL, or a large variance in pore size. Experimentation was performed to validate the transition film model by monitoring evaporation rates from a non-zero contact angle water droplet on a heated substrate. The substrate was a glass plate with a hydrophobic coating to reduce wettability. The tests were performed at a constant substrate temperature and relative humidity. The transition film model was able to accurately predict the drop volume as time elapsed. By implementing the transition film model to a pore network model the evaporation rates present in the PTL can be more accurately modeled. This improves the ability of a pore network model to predict the distribution of liquid water and ultimately the level of flooding exhibited in a PTL for various operating conditions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Tropical trees have been shown to be more susceptible to warming compared to temperate species, and have shown growth and photosynthetic declines at elevated temperatures as little as 3oC above ambient. However, regional and global vegetation models lack the data needed to accurately represent physiological response to increased temperatures in tropical forests. We compared the instantaneous photosynthetic responses to elevated temperatures of four mature tropical rainforest tree species in Puerto Rico and the temperate broadleaf species sugar maple (Acer saccharum) in Michigan. Contrary to expectations, leaves in the upper canopy of both temperate and tropical forests had temperature optima that are already exceeded by mean daily leaf temperatures. This indicates that tropical and temperate forests are already seeing photosynthesis decline at mid-day temperature. This decline may worsen as air temperatures rise with climate change if trees are unable to acclimate, increasing the likelihood that forests may shift from carbon sinks to sources. A secondary study was conducted on experimentally warmed sugar maple seedlings to determine if photosynthesis had been able to acclimate to +5oC air temperature over four years. Species abundance models had predicted a decline of sugar maple within the Upper Peninsula of Michigan over the next 100 years, due to elevated temperature and altered precipitation. Instantaneous photosynthetic temperature response curves on both control and heated seedlings showed that the differences between treatments were not statistically significant, though there was a 16% increase in temperature optima and a 3% increase in maximum rates of photosynthesis in warmed plots. Though evidence of acclimation was not significant, the seedlings did not fare poorly as the models suggest.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Aluminum alloyed with small atomic fractions of Sc, Zr, and Hf has been shown to exhibit high temperature microstructural stability that may improve high temperature mechanical behavior. These quaternary alloys were designed using thermodynamic modeling to increase the volume fraction of precipitated tri-aluminide phases to improve thermal stability. When aged during a multi-step, isochronal heat treatment, two compositions showed a secondary room-temperature hardness peak up to 700 MPa at 450°C. Elevated temperature hardness profiles also indicated an increase in hardness from 200-300°C, attributed to the precipitation of Al3Sc, however, no secondary hardness response was observed from the Al3Zr or Al3Hf phases in this alloy.