3 resultados para Teaching Evaluation and Assessment
em Digital Commons - Michigan Tech
Resumo:
This thesis evaluates a novel asymmetric capacitor incorporating a carbon foam supported nickel hydroxide positive electrode and a carbon black negative electrode. A series of symmetric capacitors were prepared to characterize the carbon black (CB) negative electrode. The influence of the binder, PTFE, content on the cell properties was evaluated. X-ray diffraction characterization of the nickel electrode during cycling is also presented. The 3 wt% and 5 wt% PTFE/CB symmetric cells were examined using cyclic voltammetry (CV) and constant current charge/discharge measurements. As compared with symmetric cells containing more PTFE, the 3 wt% cell has the highest average specific capacitance, energy density and power density over 300 cycles, 121.8 F/g, 6.44 Wh/kg, and 604.1 W/kg, respectively. Over the 3 to 10 wt% PTFE/CB range, the 3 wt% sample exhibited the lowest effective resistance and the highest BET surface area. Three asymmetric cells (3 wt% PTFE/CB negative electrode and a nickel positive) were fabricated; cycle life was examined at 3 current densities. The highest average energy and power densities over 1000 cycles were 20 Wh/kg (21 mA/cm2) and 715 W/kg (31 mA/cm2), respectively. The longest cycle life was 11,505 cycles (at 8 mA/cm2), with an average efficiency of 79% and an average energy density of 14 Wh/kg. The XRD results demonstrate that the cathodically deposited nickel electrode is a typical α-Ni(OH)2 with the R3m structure (ABBCCA stacking); the charged electrodes are 3γ-NiOOH with the same stacking as the α-type; the discharged electrodes (including as-formed electrode) are aged to β’-Ni(OH)2 (a disordered β) with the P3m structure (ABAB stacking). A 3γ remnant was observed.
Resumo:
Invasive insects that successfully establish in introduced areas can significantly alter natural communities. These pests require specific establishment criteria (e.g. host suitability) that, when known, can help quantify potential damage to infested areas. Emerald ash borer (Agrilus planipennis [Coleoptera: Buprestidae]) is an invasive phloem-feeding pest which is responsible for the death of millions of ash trees (Fraxinus spp. L.). Over 200 surviving ash trees were previously identified in the Huron-Clinton Metroparks located in southeast Michigan. Trees were assessed over a four year period and a hierarchical cluster analysis was performed on dieback, vigor, and presence of signs and symptoms, in order to place trees into one of three tolerance groups. The clustering of trees with different responses to emerald ash borer attack suggests that there are different tolerance levels in North American ash trees in southeastern Michigan, and these groups were designated as apparently tolerant, not tolerant and intermediate tolerance. Adult landing rates and evidence of adult emergence were significantly lower in the apparently tolerant group compared with the not tolerant group, but larval survival from eggs placed on trees did not differ between tolerance groups. Therefore, it appears that apparently tolerant trees survive because they are less attractive to adult beetles which results in fewer eggs being laid on them. Trees in the apparently tolerant group remained of higher vigor over the four years of the study. North American ash may survive the emerald ash borer epidemic due to natural variation and inherent resistance regardless of the lack of co-evolutionary history with emerald ash borer.
Resumo:
Sustainable development has only recently started examining the existing infrastructure, and a key aspect of this is hazard mitigation. To examine buildings under a sustainable perspective requires an understanding of a building's life-cycle environmental costs, including the consideration of associated environmental impacts induced by earthquake damage. Damage repair costs lead to additional material and energy consumption, leading to harmful environmental impacts. Merging results obtained from a seismic evaluation and life-cycle analysis for buildings will give a novel outlook on sustainable design decisions. To evaluate the environmental impacts caused by buildings, long-term impacts accrued throughout a building's lifetime and impacts associated with damage repair need to be quantified. A method and literature review for completing this examination has been developed and is discussed. Using software Athena and HAZUS-MH, this study evaluated the performance of steel and concrete buildings considering their life-cycle assessments and earthquake resistance. It was determined that code design-level greatly effects a building repair and damage estimations. This study presented two case study buildings and found specific results that were obtained using several premade assumptions. Future research recommendations were provided to make this methodology more useful in real-world applications. Examining cost and environmental impacts that a building has through, a cradle-to-grave analysis and seismic damage assessment will help reduce material consumption and construction activities from taking place before and after an earthquake event happens.