3 resultados para THETA-PINCH
em Digital Commons - Michigan Tech
Resumo:
Through the use of rhetoric centered on authority and risk avoidance, scientific method has co-opted knowledge, especially women's everyday and experiential knowledge in the domestic sphere. This, in turn, has produced a profound affect on technical communication in the present day. I am drawing on rhetorical theory to study cookbooks and recipes for their contributions to changes in instructional texts. Using the rhetorical lenses of metis (cunning intelligence), kairos (timing and fitness) and mneme (memory), I examine the way in which recipes and cookbooks are constructed, used and perceived. This helps me uncover lost voices in history, the voices of women who used recipes, produced cookbooks and changed the way instructions read. Beginning with the earliest cookbooks and recipes, but focusing on the pivotal temporal interval of 1870-1935, I investigate the writing and rhetorical forces shaping instruction sets and domestic discourse. By the time of scientific cooking and domestic science, everyday and experiential knowledge were being excluded to make room for scientific method and the industrial values of the public sphere. In this study, I also assess how the public sphere, via Cooperative Extension Services and other government agencies, impacted the domestic sphere, further devaluing everyday knowledge in favor of the public scientific model. I will show how the changes in the production of food, cookbooks and recipes were related to changes in technical communication. These changes had wide rippling effects on the field of technical communication. By returning to some of the tenets and traditions of everyday and experiential knowledge, technical communication scholars, practitioners and instructors today can find new ways to encounter technical communication, specifically regarding the creation of instructional texts. Bringing cookbooks, recipes and everyday knowledge into the classroom and the field engenders a new realm of epistemological possibilities.
Resumo:
A family of LiMO2 materials (M=Ni0.25Mn0.75) was prepared from Na1.2-xLixMO∂ precursors (0≤x≤0.6) via ion exchange. The resulting IE products were examined via XRD and compared to simulated XRD patterns produced using DIFFax to determine the defect structures resulting from the IE process. For the 0.1≤x≤0.6 materials, it is observed that there are 3 LiMO2 sub-phases with different Li contents present. As the amount of Li in the precursor increases, the amount of each phase changes resulting in a net shift to higher 2-theta; corresponding to an overall decrease in lattice parameter, approaching the theoretical values for LiMO2. Additionally, as x increases, the probability of O3-type shifting increases, most likely due to an increase in the amount O3-Li2MO3 minority phase which acts to weaken bonds in the TM layer, allowing the O3 shift to occur more easily. For the x=0 IE product, it was seen that the product had an ~O2-type structure, but with lattice parameters closer to those expected for a NaMO2 material.
Resumo:
The existence and morphology, as well as the dynamics of micro-scale gas-liquid interfaces is investigated numerically and experimentally. These studies can be used to assess liquid management issues in microsystems such as PEMFC gas flow channels, and are meant to open new research perspectives in two-phase flow, particularly in film deposition on non-wetting surfaces. For example the critical plug volume data can be used to deliver desired length plugs, or to determine the plug formation frequency. The dynamics of gas-liquid interfaces, of interest for applications involving small passages (e.g. heat exchangers, phase separators and filtration systems), was investigated using high-speed microscopy - a method that also proved useful for the study of film deposition processes. The existence limit for a liquid plug forming in a mixed wetting channel is determined by numerical simulations using Surface Evolver. The plug model simulate actual conditions in the gas flow channels of PEM fuel cells, the wetting of the gas diffusion layer (GDL) side of the channel being different from the wetting of the bipolar plate walls. The minimum plug volume, denoted as critical volume is computed for a series of GDL and bipolar plate wetting properties. Critical volume data is meant to assist in the water management of PEMFC, when corroborated with experimental data. The effect of cross section geometry is assessed by computing the critical volume in square and trapezoidal channels. Droplet simulations show that water can be passively removed from the GDL surface towards the bipolar plate if we take advantage on differing wetting properties between the two surfaces, to possibly avoid the gas transport blockage through the GDL. High speed microscopy was employed in two-phase and film deposition experiments with water in round and square capillary tubes. Periodic interface destabilization was observed and the existence of compression waves in the gas phase is discussed by taking into consideration a naturally occurring convergent-divergent nozzle formed by the flowing liquid phase. The effect of channel geometry and wetting properties was investigated through two-phase water-air flow in square and round microchannels, having three static contact angles of 20, 80 and 105 degrees. Four different flow regimes are observed for a fixed flow rate, this being thought to be caused by the wetting behavior of liquid flowing in the corners as well as the liquid film stability. Film deposition experiments in wetting and non-wetting round microchannels show that a thicker film is deposited for wetting conditions departing from the ideal 0 degrees contact angle. A film thickness dependence with the contact angle theta as well as the Capillary number, in the form h_R ~ Ca^(2/3)/ cos(theta) is inferred from scaling arguments, for contact angles smaller than 36 degrees. Non-wetting film deposition experiments reveal that a film significantly thicker than the wetting Bretherton film is deposited. A hydraulic jump occurs if critical conditions are met, as given by a proposed nondimensional parameter similar to the Froude number. Film thickness correlations are also found by matching the measured and the proposed velocity derived in the shock theory. The surface wetting as well as the presence of the shock cause morphological changes in the Taylor bubble flow.