5 resultados para Surfaces and interfaces

em Digital Commons - Michigan Tech


Relevância:

100.00% 100.00%

Publicador:

Resumo:

ab-initio Hartree Fock (HF), density functional theory (DFT) and hybrid potentials were employed to compute the optimized lattice parameters and elastic properties of perovskite 3-d transition metal oxides. The optimized lattice parameters and elastic properties are interdependent in these materials. An interaction is observed between the electronic charge, spin and lattice degrees of freedom in 3-d transition metal oxides. The coupling between the electronic charge, spin and lattice structures originates due to localization of d-atomic orbitals. The coupling between the electronic charge, spin and crystalline lattice also contributes in the ferroelectric and ferromagnetic properties in perovskites. The cubic and tetragonal crystalline structures of perovskite transition metal oxides of ABO3 are studied. The electronic structure and the physics of 3-d perovskite materials is complex and less well considered. Moreover, the novelty of the electronic structure and properties of these perovskites transition metal oxides exceeds the challenge offered by their complex crystalline structures. To achieve the objective of understanding the structure and property relationship of these materials the first-principle computational method is employed. CRYSTAL09 code is employed for computing crystalline structure, elastic, ferromagnetic and other electronic properties. Second-order elastic constants (SOEC) and bulk moduli (B) are computed in an automated process by employing ELASTCON (elastic constants) and EOS (equation of state) programs in CRYSTAL09 code. ELASTCON, EOS and other computational algorithms are utilized to determine the elastic properties of tetragonal BaTiO3, rutile TiO2, cubic and tetragonal BaFeO3 and the ferromagentic properties of 3-d transition metal oxides. Multiple methods are employed to crosscheck the consistency of our computational results. Computational results have motivated us to explore the ferromagnetic properties of 3-d transition metal oxides. Billyscript and CRYSTAL09 code are employed to compute the optimized geometry of the cubic and tetragonal crystalline structure of transition metal oxides of Sc to Cu. Cubic crystalline structure is initially chosen to determine the effect of lattice strains on ferromagnetism due to the spin angular momentum of an electron. The 3-d transition metals and their oxides are challenging as the basis functions and potentials are not fully developed to address the complex physics of the transition metals. Moreover, perovskite crystalline structures are extremely challenging with respect to the quality of computations as the latter requires the well established methods. Ferroelectric and ferromagnetic properties of bulk, surfaces and interfaces are explored by employing CRYSTAL09 code. In our computations done on cubic TMOs of Sc-Fe it is observed that there is a coupling between the crystalline structure and FM/AFM spin polarization. Strained crystalline structures of 3-d transition metal oxides are subjected to changes in the electromagnetic and electronic properties. The electronic structure and properties of bulk, composites, surfaces of 3-d transition metal oxides are computed successfully.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This dissertation presents detailed experimental and theoretical investigations of nonlinear and nonreciprocal effects in magnetic garnet films. The dissertation thus comprises two major sections. The first section concentrates on the study of a new class of nonlinear magneto-optic thin film materials possessing strong higher order magnetic susceptibility for nonlinear optical applications. The focus was on enlarging the nonlinear performance of ferrite garnet films by strain generation and compositional gradients in the sputter-deposition growth of these films. Under this project several bismuth-substituted yttrium iron garnet (Bi,Y) 3 (Fe,Ga)5 O12(acronym as Bi:YIG) films have been sputter-deposited over gadolinium gallium garnet (Gd 3 Ga5 O12 ) substrates and characterized for their nonlinear optical response. One of the important findings of this work is that lattice mismatch strain drives the second harmonic (SH) signal in the Bi:YIG films, in agreement with theoretical predictions; whereas micro-strain was found not to correlate significantly with SH signal at the micro-strain levels present in these films. This study also elaborates on the role of the film's constitutive elements and their concentration gradients in nonlinear response of the films. Ultrahigh sensitivity delivered by second harmonic generation provides a new exciting tool for studying magnetized surfaces and buried interfaces, making this work important from both a fundamental and application point of view. The second part of the dissertation addresses an important technological need; namely the development of an on-chip optical isolator for use in photonic integrated circuits. It is based on two related novel effects, nonreciprocal and unidirectional optical Bloch oscillations (BOs), recently proposed and developed by Professor Miguel Levy and myself. This dissertation work has established a comprehensive theoretical background for the implementation of these effects in magneto-optic waveguide arrays. The model systems we developed consist of photonic lattices in the form of one-dimensional waveguide arrays where an optical force is introduced into the array through geometrical design turning the beam sideways. Laterally displaced photons are periodically returned to a central guide by photonic crystal action. The effect leads to a novel oscillatory optical phenomenon that can be magnetically controlled and rendered unidirectional. An on-chip optical isolator was designed based on the unidirectionality of the magneto-opticBloch oscillatory motion. The proposed device delivers an isolation ratio as high as 36 dB that remains above 30 dB in a 0.7 nm wavelength bandwidth, at the telecommunication wavelength 1.55 μm. Slight modifications in isolator design allow one to achieve an even more impressive isolation ratio ~ 55 dB, but at the expense of smaller bandwidth. Moreover, the device allows multifunctionality, such as optical switching with a simultaneous isolation function, well suited for photonic integrated circuits.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Water-saturated debris flows are among some of the most destructive mass movements. Their complex nature presents a challenge for quantitative description and modeling. In order to improve understanding of the dynamics of these flows, it is important to seek a simplified dynamic system underlying their behavior. Models currently in use to describe the motion of debris flows employ depth-averaged equations of motion, typically assuming negligible effects from vertical acceleration. However, in many cases debris flows experience significant vertical acceleration as they move across irregular surfaces, and it has been proposed that friction associated with vertical forces and liquefaction merit inclusion in any comprehensive mechanical model. The intent of this work is to determine the effect of vertical acceleration through a series of laboratory experiments designed to simulate debris flows, testing a recent model for debris flows experimentally. In the experiments, a mass of water-saturated sediment is released suddenly from a holding container, and parameters including rate of collapse, pore-fluid pressure, and bed load are monitored. Experiments are simplified to axial geometry so that variables act solely in the vertical dimension. Steady state equations to infer motion of the moving sediment mass are not sufficient to model accurately the independent solid and fluid constituents in these experiments. The model developed in this work more accurately predicts the bed-normal stress of a saturated sediment mass in motion and illustrates the importance of acceleration and deceleration.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

For half a century the integrated circuits (ICs) that make up the heart of electronic devices have been steadily improving by shrinking at an exponential rate. However, as the current crop of ICs get smaller and the insulating layers involved become thinner, electrons leak through due to quantum mechanical tunneling. This is one of several issues which will bring an end to this incredible streak of exponential improvement of this type of transistor device, after which future improvements will have to come from employing fundamentally different transistor architecture rather than fine tuning and miniaturizing the metal-oxide-semiconductor field effect transistors (MOSFETs) in use today. Several new transistor designs, some designed and built here at Michigan Tech, involve electrons tunneling their way through arrays of nanoparticles. We use a multi-scale approach to model these devices and study their behavior. For investigating the tunneling characteristics of the individual junctions, we use a first-principles approach to model conduction between sub-nanometer gold particles. To estimate the change in energy due to the movement of individual electrons, we use the finite element method to calculate electrostatic capacitances. The kinetic Monte Carlo method allows us to use our knowledge of these details to simulate the dynamics of an entire device— sometimes consisting of hundreds of individual particles—and watch as a device ‘turns on’ and starts conducting an electric current. Scanning tunneling microscopy (STM) and the closely related scanning tunneling spectroscopy (STS) are a family of powerful experimental techniques that allow for the probing and imaging of surfaces and molecules at atomic resolution. However, interpretation of the results often requires comparison with theoretical and computational models. We have developed a new method for calculating STM topographs and STS spectra. This method combines an established method for approximating the geometric variation of the electronic density of states, with a modern method for calculating spin-dependent tunneling currents, offering a unique balance between accuracy and accessibility.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The present dissertation aimed to develop a new microfluidic system for a point-of-care hematocrit device. Stabilization of microfluidic systems via surfactant additives and integration of semipermeable SnakeSkin® membranes was investigated. Both methods stabilized the microfluidic systems by controlling electrolysis bubbles. Surfactant additives, Triton X-100 and SDS stabilized promoted faster bubble detachment at electrode surfaces by lowering surface tension and decreased gas bubble formation by increasing gas solubility. The SnakeSkin® membranes blocked bubbles from entering the microchannel and thus less disturbance to the electric field by bubbles occurred in the microchannel. Platinum electrode performance was improved by carbonizing electrode surface using red blood cells. Irreversibly adsorbed RBCs lysed on platinum electrode surfaces and formed porous carbon layers while current response measurements. The formed carbon layers increase the platinum electrode surface area and thus electrode performance was improved by 140 %. The microfluidic system was simplified by employing DC field to use as a platform for a point-of-care hematocrit device. Feasibility of the microfluidic system for hematocrit determination was shown via current response measurements of red blood cell suspensions in phosphate buffered saline and plasma media. The linear trendline of current responses over red blood cell concentration was obtained in both phosphate buffered saline and plasma media. This research suggested that a new and simple microfluidic system could be a promising solution to develop an inexpensive and reliable point-of-care hematocrit device.