4 resultados para Supply-demand
em Digital Commons - Michigan Tech
Resumo:
Intermediaries permeate modern economic exchange. Most classical models on intermediated exchange are driven by information asymmetry and inventory management. These two factors are of reduced significance in modern economies. This makes it necessary to develop models that correspond more closely to modern financial marketplaces. The goal of this dissertation is to propose and examine such models in a game theoretical context. The proposed models are driven by asymmetries in the goals of different market participants. Hedging pressure as one of the most critical aspects in the behavior of commercial entities plays a crucial role. The first market model shows that no equilibrium solution can exist in a market consisting of a commercial buyer, a commercial seller and a non-commercial intermediary. This indicates a clear economic need for non-commercial trading intermediaries: a direct trade from seller to buyer does not result in an equilibrium solution. The second market model has two distinct intermediaries between buyer and seller: a spread trader/market maker and a risk-neutral intermediary. In this model a unique, natural equilibrium solution is identified in which the supply-demand surplus is traded by the risk-neutral intermediary, whilst the market maker trades the remainder from seller to buyer. Since the market maker’s payoff for trading at the identified equilibrium price is zero, this second model does not provide any motivation for the market maker to enter the market. The third market model introduces an explicit transaction fee that enables the market maker to secure a positive payoff. Under certain assumptions on this transaction fee the equilibrium solution of the previous model applies and now also provides a financial motivation for the market maker to enter the market. If the transaction fee violates an upper bound that depends on supply, demand and riskaversity of buyer and seller, the market will be in disequilibrium.
Analysis of spring break-up and its effects on a biomass feedstock supply chain in northern Michigan
Resumo:
Demand for bio-fuels is expected to increase, due to rising prices of fossil fuels and concerns over greenhouse gas emissions and energy security. The overall cost of biomass energy generation is primarily related to biomass harvesting activity, transportation, and storage. With a commercial-scale cellulosic ethanol processing facility in Kinross Township of Chippewa County, Michigan about to be built, models including a simulation model and an optimization model have been developed to provide decision support for the facility. Both models track cost, emissions and energy consumption. While the optimization model provides guidance for a long-term strategic plan, the simulation model aims to present detailed output for specified operational scenarios over an annual period. Most importantly, the simulation model considers the uncertainty of spring break-up timing, i.e., seasonal road restrictions. Spring break-up timing is important because it will impact the feasibility of harvesting activity and the time duration of transportation restrictions, which significantly changes the availability of feedstock for the processing facility. This thesis focuses on the statistical model of spring break-up used in the simulation model. Spring break-up timing depends on various factors, including temperature, road conditions and soil type, as well as individual decision making processes at the county level. The spring break-up model, based on the historical spring break-up data from 27 counties over the period of 2002-2010, starts by specifying the probability distribution of a particular county’s spring break-up start day and end day, and then relates the spring break-up timing of the other counties in the harvesting zone to the first county. In order to estimate the dependence relationship between counties, regression analyses, including standard linear regression and reduced major axis regression, are conducted. Using realizations (scenarios) of spring break-up generated by the statistical spring breakup model, the simulation model is able to probabilistically evaluate different harvesting and transportation plans to help the bio-fuel facility select the most effective strategy. For early spring break-up, which usually indicates a longer than average break-up period, more log storage is required, total cost increases, and the probability of plant closure increases. The risk of plant closure may be partially offset through increased use of rail transportation, which is not subject to spring break-up restrictions. However, rail availability and rail yard storage may then become limiting factors in the supply chain. Rail use will impact total cost, energy consumption, system-wide CO2 emissions, and the reliability of providing feedstock to the bio-fuel processing facility.
Resumo:
In the Dominican Republic economic growth in the past twenty years has not yielded sufficient improvement in access to drinking water services, especially in rural areas where 1.5 million people do not have access to an improved water source (WHO, 2006). Worldwide, strategic development planning in the rural water sector has focused on participatory processes and the use of demand filters to ensure that service levels match community commitment to post-project operation and maintenance. However studies have concluded that an alarmingly high percentage of drinking water systems (20-50%) do not provide service at the design levels and/or fail altogether (up to 90%): BNWP (2009), Annis (2006), and Reents (2003). World Bank, USAID, NGOs, and private consultants have invested significant resources in an effort to determine what components make up an “enabling environment” for sustainable community management of rural water systems (RWS). Research has identified an array of critical factors, internal and external to the community, which affect long term sustainability of water services. Different frameworks have been proposed in order to better understand the linkages between individual factors and sustainability of service. This research proposes a Sustainability Analysis Tool to evaluate the sustainability of RWS, adapted from previous relevant work in the field to reflect the realities in the Dominican Republic. It can be used as a diagnostic tool for government entities and development organizations to characterize the needs of specific communities and identify weaknesses in existing training regimes or support mechanisms. The framework utilizes eight indicators in three categories (Organization/Management, Financial Administration, and Technical Service). Nineteen independent variables are measured resulting in a score of sustainability likely (SL), possible (SP), or unlikely (SU) for each of the eight indicators. Thresholds are based upon benchmarks from the DR and around the world, primary data collected during the research, and the author’s 32 months of field experience. A final sustainability score is calculated using weighting factors for each indicator, derived from Lockwood (2003). The framework was tested using a statistically representative geographically stratified random sample of 61 water systems built in the DR by initiatives of the National Institute of Potable Water (INAPA) and Peace Corps. The results concluded that 23% of sample systems are likely to be sustainable in the long term, 59% are possibly sustainable, and for 18% it is unlikely that the community will be able to overcome any significant challenge. Communities that were scored as unlikely sustainable perform poorly in participation, financial durability, and governance while the highest scores were for system function and repair service. The Sustainability Analysis Tool results are verified by INAPA and PC reports, evaluations, and database information, as well as, field observations and primary data collected during the surveys. Future research will analyze the nature and magnitude of relationships between key factors and the sustainability score defined by the tool. Factors include: gender participation, legal status of water committees, plumber/operator remuneration, demand responsiveness, post construction support methodologies, and project design criteria.
Resumo:
A range of societal issues have been caused by fossil fuel consumption in the transportation sector in the United States (U.S.), including health related air pollution, climate change, the dependence on imported oil, and other oil related national security concerns. Biofuels production from various lignocellulosic biomass types such as wood, forest residues, and agriculture residues have the potential to replace a substantial portion of the total fossil fuel consumption. This research focuses on locating biofuel facilities and designing the biofuel supply chain to minimize the overall cost. For this purpose an integrated methodology was proposed by combining the GIS technology with simulation and optimization modeling methods. The GIS based methodology was used as a precursor for selecting biofuel facility locations by employing a series of decision factors. The resulted candidate sites for biofuel production served as inputs for simulation and optimization modeling. As a precursor to simulation or optimization modeling, the GIS-based methodology was used to preselect potential biofuel facility locations for biofuel production from forest biomass. Candidate locations were selected based on a set of evaluation criteria, including: county boundaries, a railroad transportation network, a state/federal road transportation network, water body (rivers, lakes, etc.) dispersion, city and village dispersion, a population census, biomass production, and no co-location with co-fired power plants. The simulation and optimization models were built around key supply activities including biomass harvesting/forwarding, transportation and storage. The built onsite storage served for spring breakup period where road restrictions were in place and truck transportation on certain roads was limited. Both models were evaluated using multiple performance indicators, including cost (consisting of the delivered feedstock cost, and inventory holding cost), energy consumption, and GHG emissions. The impact of energy consumption and GHG emissions were expressed in monetary terms to keep consistent with cost. Compared with the optimization model, the simulation model represents a more dynamic look at a 20-year operation by considering the impacts associated with building inventory at the biorefinery to address the limited availability of biomass feedstock during the spring breakup period. The number of trucks required per day was estimated and the inventory level all year around was tracked. Through the exchange of information across different procedures (harvesting, transportation, and biomass feedstock processing procedures), a smooth flow of biomass from harvesting areas to a biofuel facility was implemented. The optimization model was developed to address issues related to locating multiple biofuel facilities simultaneously. The size of the potential biofuel facility is set up with an upper bound of 50 MGY and a lower bound of 30 MGY. The optimization model is a static, Mathematical Programming Language (MPL)-based application which allows for sensitivity analysis by changing inputs to evaluate different scenarios. It was found that annual biofuel demand and biomass availability impacts the optimal results of biofuel facility locations and sizes.