2 resultados para Sugar Creek Watershed (Crawford County, Ill.)

em Digital Commons - Michigan Tech


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Although natural gas has been praised as a clean and abundant energy source, the varying impacts and uncertainties surrounding the process of extracting natural gas from unconventional sources, known as horizontal high-volume hydraulic fracturing (HVHF) or “fracking,” have raised important concerns. The practice of HVHF is expanding so quickly that the full impacts are not yet known. This thesis project, using a grounded theory methodological approach, explores the risks and benefits associated with HVHF as recognized by the residents of two Michigan counties, one that currently produces natural gas by HVHF (Crawford County) and one that does not (Barry County). Through an analysis of media content related to HVHF in each case study site and interviews with stakeholders in both counties, this study examines perceptions of risks and benefits by comparing two communities that differ in their level of experience with HVHF operations, contributing to our understanding of how perceptions of risks and benefits are shaped by natural gas development. The comparative analysis of the case study counties revealed similarities and differences between the case study counties. Overall, Barry County residents identified fewer benefits and more risks, and had stronger negative perceptions than Crawford County residents. This study contributes to the social science literature by developing a richer theoretical frame for understanding perceptions of HVHF and also shares recommendations for industry, organizations, regulators, and government leaders interested in effectively communicating with community stakeholders about the benefits and risks of HVHF.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Riparian ecology plays an important part in the filtration of sediments from upland agricultural lands. The focus of this work makes use of multispectral high spatial resolution remote sensing imagery (Quickbird by Digital Globe) and geographic information systems (GIS) to characterize significant riparian attributes in the USDA’s experimental watershed, Goodwin Creek, located in northern Mississippi. Significant riparian filter characteristics include the width of the strip, vegetation properties, soil properties, topography, and upland land use practices. The land use and vegetation classes are extracted from the remotely sensed image with a supervised maximum likelihood classification algorithm. Accuracy assessments resulted in an acceptable overall accuracy of 84 percent. In addition to sensing riparian vegetation characteristics, this work addresses the issue of concentrated flow bypassing a riparian filter. Results indicate that Quickbird multispectral remote sensing and GIS data are capable of determining riparian impact on filtering sediment. Quickbird imagery is a practical solution for land managers to monitor the effectiveness of riparian filtration in an agricultural watershed.