2 resultados para Substrate patterning
em Digital Commons - Michigan Tech
Resumo:
The patterning of photoactive purple membrane (PM) films onto electronic substrates to create a biologically based light detection device was investigated. This research is part of a larger collaborative effort to develop a miniaturized toxin detection platform. This platform will utilize PM films containing the photoactive protein bacteriorhodopsin to convert light energy to electrical energy. Following an effort to pattern PM films using focused ion beam machining, the photolithography based bacteriorhodopsin patterning technique (PBBPT) was developed. This technique utilizes conventional photolithography techniques to pattern oriented PM films onto flat substrates. After the basic patterning process was developed, studies were conducted that confirmed the photoelectric functionality of the PM films after patterning. Several process variables were studied and optimized in order to increase the pattern quality of the PM films. Optical microscopy, scanning electron microscopy, and interferometric microscopy were used to evaluate the PM films produced by the patterning technique. Patterned PM films with lateral dimensions of 15 μm have been demonstrated using this technique. Unlike other patterning techniques, the PBBPT uses standard photolithographic processes that make its integration with conventional semiconductor fabrication feasible. The final effort of this research involved integrating PM films patterned using the PBBPT with PMOS transistors. An indirect integration of PM films with PMOS transistors was successfully demonstrated. This indirect integration used the voltage produced by a patterned PM film under light exposure to modulate the gate of a PMOS transistor, activating the transistor. Following this success, a study investigating how this PM based light detection system responded to variations in light intensity supplied to the PM film. This work provides a successful proof of concept for a portion of the toxin detection platform currently under development.
Resumo:
Northern peatlands are large reservoirs of soil organic carbon (C). Historically peatlands have served as a sink for C since decomposition is slowed primarily because of a raised water table (WT) that creates anoxic conditions. Climate models are predicting dramatic changes in temperature and precipitation patterns for the northern hemisphere that contain more than 90% of the world’s peatlands. It is uncertain whether climate change will shift northern peatlands from C sequestering systems to a major global C source within the next century because of alterations to peatland hydrology. This research investigated the effects of 80 years of hydrological manipulations on peatland C cycling in a poor fen peatland in northern Michigan. The construction of an earthen levee within the Seney National Wildlife Refuge in the 1930’s resulted in areas of raised and lowered WT position relative to an intermediate WT site that was unaltered by the levee. We established sites across the gradient of long-term WT manipulations to examine how decadal changes in WT position alter peatland C cycling. We quantified vegetation dynamics, peat substrate quality, and pore water chemistry in relation to trace gas C cycling in these manipulated areas as well as the intermediate site. Vegetation in both the raised and lowered WT treatments has different community structure, biomass, and productivity dynamics compared to the intermediate site. Peat substrate quality exhibited differences in chemical composition and lability across the WT treatments. Pore water dissolved organic carbon (DOC) concentrations increased with impoundment and WT drawdown. The raised WT treatment DOC has a low aromaticity and is a highly labile C source, whereas WT drawdown has increased DOC aromaticity. This study has demonstrated a subtle change of the long-term WT position in a northern peatland will induce a significant influence on ecosystem C cycling with implications for the fate of peatland C stocks.