2 resultados para Study sites
em Digital Commons - Michigan Tech
Resumo:
The Calvert Cliffs, which form much of the western coastline of the Chesapeake Bay in Calvert County, Maryland, are actively eroding and destabilizing, resulting in a critical situation for many homes in close proximity to the slope's crest. Past studies have identified that where waves directly interact with the toe of the slope, wave action controls cliff recession; however, where waves do not regularly interact with the slope toe, the past work identified that freeze-thaw controls recession. This study investigated the validity of this second claim by analyzing the recession rate and freeze-thaw behavior of six study sites along the Calvert Cliffs that are not directly affected by waves. While waves do remove failed material from the toe, in these regions freeze-thaw is believed to be the dominant factor driving recession at the Calvert Cliffs. Past recession rates were calculated using historical aerial photographs and were analyzed together with a number of other variables selected to represent the freeze-thaw behavior of the Calvert Cliffs. The investigation studied sixteen independent variables and found that over 65% of recession at these study sites can be represented by the following five variables: (1) cliff face direction, (2 and 3) the percent of total cliff height composed of soil with freeze-thaw susceptibility F4 and F2, (4) the number of freeze-thaw cycles, and (5) the weighted shear strength. Future mitigation techniques at these sites should focus on addressing these variables and might include vegetation or addressing the presence of water along the face of the slope. Unmitigated, the Calvert Cliffs will continue to recede until a stable slope angle is reached and maintained.
Resumo:
A shift in plant communities of the Water Conservation Areas (WCAs) within the Everglades has been linked to changes in hydrology and high levels of nutrient loading from surrounding agicultural areas. This has resulted in the encroachment of dense cattail stands (Typha domingensis) into areas that had previously been a ridge and slough landscape populated primarily by native sawgrass (Cladium jamaicense). In order to study ecological management solutions in this area, WCA-2A was broken into study plots; several of which became open water areas through the application of herbicide and burning regimens. The open water areas allowed for Chara spp (a submersed algal species) to replace Typha domingensis as the dominant macrophyte. This study investigated the polymer and ionic profiles of Chara spp, Typha domingensis and Cladium jamaicense and their contributions to detrital flocculent (floc) in the study plots where they are the dominant macrophytes. Floc is not only an important food source for aquatic species; it also supports many algal, fungal and bacterial communities. Data gathered in this study indicated that the floc sample from a phosphorus enriched open water study plot (EO1) where Chara spp was the dominant macrophyte may contain cell wall polymers from sources other than Chara spp (most likely Typha domingensis), while the chemical and polymeric profile of the floc of the study plot where Typha domingensis is the dominant macrophyte (EC1) suggests that the floc layer has contributions from algal sources as well as Typha domingensis. Additionally, monoclonal antibodies to Arabinoglalactan protein (AGP) and (1,4)-β-D galactan were identified as possible biomarkers for distinguishing algal dominated floc layers from layers dominated by emergent vegetation. Calcium labeling could be a useful tool for this as well because of the high amount of Ca2+ associated with Chara spp cell walls. When looking into the soluble phosphorus content of the macrophytes and paired floc samples of WCA-2A, it was found that Chara spp may be contributing a greater amount of Ca-bound phosphorus to floc layers where it is the dominant macrophyte when compared to floc layers from study plots dominated by emergent macrophytes. Floc layers also appear to be acting as a nutrient sink for soluble phosphorus. The findings of this study support the overall hypothesis that the shift from native emergent macrophyte communities to submersed macrophyte communities in study sites of the northern Everglades is affecting the polymeric/chemical profile and ionic content of detrital floc layers. The effects of this shift may contribute to changes in complex flocculent community dynamics.