4 resultados para Structured light system

em Digital Commons - Michigan Tech


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Anonymity systems maintain the anonymity of communicating nodes by camouflaging them, either with peer nodes generating dummy traffic or with peer nodes participating in the actual communication process. The probability of any adversary breaking down the anonymity of the communicating nodes is inversely proportional to the number of peer nodes participating in the network. Hence to maintain the anonymity of the communicating nodes, a large number of peer nodes are needed. Lack of peer availability weakens the anonymity of any large scale anonymity system. This work proposes PayOne, an incentive based scheme for promoting peer availability. PayOne aims to increase the peer availability by encouraging nodes to participate in the anonymity system by awarding them with incentives and thereby promoting the anonymity strength. Existing incentive schemes are designed for single path based approaches. There is no incentive scheme for multipath based or epidemic based anonymity systems. This work has been specifically designed for epidemic protocols and has been implemented over MuON, one of the latest entries to the area of multicasting based anonymity systems. MuON is a peer-to-peer based anonymity system which uses epidemic protocol for data dissemination. Existing incentive schemes involve paying every intermediate node that is involved in the communication between the initiator and the receiver. These schemes are not appropriate for epidemic based anonymity systems due to the incurred overhead. PayOne differs from the existing schemes because it involves paying a single intermediate node that participates in the network. The intermediate node can be any random node that participates in the communication and does not necessarily need to lie in the communication path between the initiator and the receiver. The light-weight characteristics of PayOne make it viable for large-scale epidemic based anonymity systems.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The microalga Haematococcus pluvialis was cultivated in MES-volvox medium at various light intensities and CO2 concentrations. It was found that CO2 concentrations of 10 and 15%, in combination with high irradiance at initial pH =6.7, accelerate astaxanthin accumulation in H. pluvialis cells but obstruct cell growth. The purpose of this research study was to devise a one-stage process consisting of the simultaneous cultivation of H. pluvialis and astaxanthin production using high light intensity and high CO2 concentration. This could be achieved at 200 µE/m2s and 15% CO2 in growth medium at initial pH = 4.3. Compared to the traditional two-stage H. pluvialis cultivation system, this one-step process can save up to 8-9 days of astaxanthin production time. The astaxanthin content in H. pluvialis cells induced with high light intensity only or with a combination of high light intensity and high CO2 concentration had comparable astaxanthin content; 94 and 97 mg/g dry biomass, respectively. However, it was extremely low in nitrate-free medium at high irradiance alone or combined with high CO2 concentration, with an average value of 4 mg/g dry biomass. Cell density was 40% less in cultures under discontinuous illumination compared to continuous illumination. This process could serve as a microalgal CO2 mitigation system after further understanding of the CO2 fixation ability of H. pluvialis has been gained.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Wireless sensor network is an emerging research topic due to its vast and ever-growing applications. Wireless sensor networks are made up of small nodes whose main goal is to monitor, compute and transmit data. The nodes are basically made up of low powered microcontrollers, wireless transceiver chips, sensors to monitor their environment and a power source. The applications of wireless sensor networks range from basic household applications, such as health monitoring, appliance control and security to military application, such as intruder detection. The wide spread application of wireless sensor networks has brought to light many research issues such as battery efficiency, unreliable routing protocols due to node failures, localization issues and security vulnerabilities. This report will describe the hardware development of a fault tolerant routing protocol for railroad pedestrian warning system. The protocol implemented is a peer to peer multi-hop TDMA based protocol for nodes arranged in a linear zigzag chain arrangement. The basic working of the protocol was derived from Wireless Architecture for Hard Real-Time Embedded Networks (WAHREN).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Colloid self-assembly under external control is a new route to fabrication of advanced materials with novel microstructures and appealing functionalities. The kinetic processes of colloidal self-assembly have attracted great interests also because they are similar to many atomic level kinetic processes of materials. In the past decades, rapid technological progresses have been achieved on producing shape-anisotropic, patchy, core-shell structured particles and particles with electric/magnetic charges/dipoles, which greatly enriched the self-assembled structures. Multi-phase carrier liquids offer new route to controlling colloidal self-assembly. Therefore, heterogeneity is the essential characteristics of colloid system, while so far there still lacks a model that is able to efficiently incorporate these possible heterogeneities. This thesis is mainly devoted to development of a model and computational study on the complex colloid system through a diffuse-interface field approach (DIFA), recently developed by Wang et al. This meso-scale model is able to describe arbitrary particle shape and arbitrary charge/dipole distribution on the surface or body of particles. Within the framework of DIFA, a Gibbs-Duhem-type formula is introduced to treat Laplace pressure in multi-liquid-phase colloidal system and it obeys Young-Laplace equation. The model is thus capable to quantitatively study important capillarity related phenomena. Extensive computer simulations are performed to study the fundamental behavior of heterogeneous colloidal system. The role of Laplace pressure is revealed in determining the mechanical equilibrium of shape-anisotropic particles at fluid interfaces. In particular, it is found that the Laplace pressure plays a critical role in maintaining the stability of capillary bridges between close particles, which sheds light on a novel route to in situ firming compact but fragile colloidal microstructures via capillary bridges. Simulation results also show that competition between like-charge repulsion, dipole-dipole interaction and Brownian motion dictates the degree of aggregation of heterogeneously charged particles. Assembly and alignment of particles with magnetic dipoles under external field is studied. Finally, extended studies on the role of dipole-dipole interaction are performed for ferromagnetic and ferroelectric domain phenomena. The results reveal that the internal field generated by dipoles competes with external field to determine the dipole-domain evolution in ferroic materials.