8 resultados para Structural properties
em Digital Commons - Michigan Tech
Resumo:
This research focused on the to modification of the surface structure of titanium implants with nanostructured morphology of TiO2 nanotubes and studied the interaction of nanotubes with osteoblast cells to understand the parameters that affect the cell growth. The electrical, mechanical, and structural properties of TiO2 nanotubes were characterized to establish a better understanding on the properties of such nanoscale morphological structures. To achieve the objectives of this research work I transformed the titanium and its alloys, either in bulk sheet form, bulk machined form, or thin film deposited on another substrate into a surface of titania nanotubes using a low cost and environmentally friendly process. The process requires only a simple electrolyte, low cost electrode, and a DC power supply. With this simple approach of scalable nanofabrication, a typical result is nanotubes that are each approximately 100nm in diameter and have a wall thickness of about 20nm. By changing the fabrication parameters, independent nanotubes can be fabricated with open volume between them. Titanium in this form is termed onedimensional since electron transport is narrowly confined along the length of the nanotube. My Ph.D. accomplishments have successfully shown that osteoblast cells, the cells that are the precursors to bone, have a strong tendency to attach to the inside and outside of the titanium nanotubes onto which they are grown using their filopodia – cell’s foot used for locomotion – anchored to titanium nanotubes. In fact it was shown that the cell prefers to find many anchoring sites. These sites are critical for cell locomotion during the first several weeks of maturity and upon calcification as a strongly anchored bone cell. In addition I have shown that such a surface has a greater cell density than a smooth titanium surface. My work also developed a process that uses a focused and controllably rastered ion beam as a nano-scalpel to cut away sections of the osteoblast cells to probe the attachment beneath the main cell body. Ultimately the more rapid growth of osteoblasts, coupled with a stronger cell-surface interface, could provide cost reduction, shorter rehabilitation, and fewer follow-on surgeries due to implant loosening.
Resumo:
Semi-active damping devices have been shown to be effective in mitigating unwanted vibrations in civil structures. These devices impart force indirectly through real-time alterations to structural properties. Simulating the complex behavior of these devices for laboratory-scale experiments is a major challenge. Commercial devices for seismic applications typically operate in the 2-10 kN range; this force is too high for small-scale testing applications where requirements typically range from 0-10 N. Several challenges must be overcome to produce damping forces at this level. In this study, a small-scale magneto-rheological (MR) damper utilizing a fluid absorbent metal foam matrix is developed and tested to accomplish this goal. This matrix allows magneto-rheological (MR) fluid to be extracted upon magnetic excitation in order to produce MR-fluid shear stresses and viscosity effects between an electromagnetic piston, the foam, and the damper housing. Dampers for uniaxial seismic excitation are traditionally positioned in the horizontal orientation allowing MR-fluid to gather in the lower part of the damper housing when partially filled. Thus, the absorbent matrix is placed in the bottom of the housing relieving the need to fill the entire device with MR-fluid, a practice that requires seals that add significant unwanted friction to the desired low-force device. The damper, once constructed, can be used in feedback control applications to reduce seismic vibrations and to test structural control algorithms and wireless command devices. To validate this device, a parametric study was performed utilizing force and acceleration measurements to characterize damper performance and controllability for this actuator. A discussion of the results is presented to demonstrate the attainment of the damper design objectives.
Resumo:
Molecules are the smallest possible elements for electronic devices, with active elements for such devices typically a few Angstroms in footprint area. Owing to the possibility of producing ultrahigh density devices, tremendous effort has been invested in producing electronic junctions by using various types of molecules. The major issues for molecular electronics include (1) developing an effective scheme to connect molecules with the present micro- and nano-technology, (2) increasing the lifetime and stabilities of the devices, and (3) increasing their performance in comparison to the state-of-the-art devices. In this work, we attempt to use carbon nanotubes (CNTs) as the interconnecting nanoelectrodes between molecules and microelectrodes. The ultimate goal is to use two individual CNTs to sandwich molecules in a cross-bar configuration while having these CNTs connected with microelectrodes such that the junction displays the electronic character of the molecule chosen. We have successfully developed an effective scheme to connect molecules with CNTs, which is scalable to arrays of molecular electronic devices. To realize this far reaching goal, the following technical topics have been investigated. 1. Synthesis of multi-walled carbon nanotubes (MWCNTs) by thermal chemical vapor deposition (T-CVD) and plasma-enhanced chemical vapor deposition (PECVD) techniques (Chapter 3). We have evaluated the potential use of tubular and bamboo-like MWCNTs grown by T-CVD and PE-CVD in terms of their structural properties. 2. Horizontal dispersion of MWCNTs with and without surfactants, and the integration of MWCNTs to microelectrodes using deposition by dielectrophoresis (DEP) (Chapter 4). We have systematically studied the use of surfactant molecules to disperse and horizontally align MWCNTs on substrates. In addition, DEP is shown to produce impurityfree placement of MWCNTs, forming connections between microelectrodes. We demonstrate the deposition density is tunable by both AC field strength and AC field frequency. 3. Etching of MWCNTs for the impurity-free nanoelectrodes (Chapter 5). We show that the residual Ni catalyst on MWCNTs can be removed by acid etching; the tip removal and collapsing of tubes into pyramids enhances the stability of field emission from the tube arrays. The acid-etching process can be used to functionalize the MWCNTs, which was used to make our initial CNT-nanoelectrode glucose sensors. Finally, lessons learned trying to perform spectroscopic analysis of the functionalized MWCNTs were vital for designing our final devices. 4. Molecular junction design and electrochemical synthesis of biphenyl molecules on carbon microelectrodes for all-carbon molecular devices (Chapter 6). Utilizing the experience gained on the work done so far, our final device design is described. We demonstrate the capability of preparing patterned glassy carbon films to serve as the bottom electrode in the new geometry. However, the molecular switching behavior of biphenyl was not observed by scanning tunneling microscopy (STM), mercury drop or fabricated glassy carbon/biphenyl/MWCNT junctions. Either the density of these molecules is not optimum for effective integration of devices using MWCNTs as the nanoelectrodes, or an electroactive contaminant was reduced instead of the ionic biphenyl species. 5. Self-assembly of octadecanethiol (ODT) molecules on gold microelectrodes for functional molecular devices (Chapter 7). We have realized an effective scheme to produce Au/ODT/MWCNT junctions by spanning MWCNTs across ODT-functionalized microelectrodes. A percentage of the resulting junctions retain the expected character of an ODT monolayer. While the process is not yet optimized, our successful junctions show that molecular electronic devices can be fabricated using simple processes such as photolithography, self-assembled monolayers and dielectrophoresis.
Resumo:
One-dimensional nanostructures initiated new aspects to the materials applications due to their superior properties compared to the bulk materials. Properties of nanostructures have been characterized by many techniques and used for various device applications. However, simultaneous correlation between the physical and structural properties of these nanomaterials has not been widely investigated. Therefore, it is necessary to perform in-situ study on the physical and structural properties of nanomaterials to understand their relation. In this work, we will use a unique instrument to perform real time atomic force microscopy (AFM) and scanning tunneling microscopy (STM) of nanomaterials inside a transmission electron microscopy (TEM) system. This AFM/STM-TEM system is used to investigate the mechanical, electrical, and electrochemical properties of boron nitride nanotubes (BNNTs) and Silicon nanorods (SiNRs). BNNTs are one of the subjects of this PhD research due to their comparable, and in some cases superior, properties compared to carbon nanotubes. Therefore, to further develop their applications, it is required to investigate these characteristics in atomic level. In this research, the mechanical properties of multi-walled BNNTs were first studied. Several tests were designed to study and characterize their real-time deformation behavior to the applied force. Observations revealed that BNNTs possess highly flexible structures under applied force. Detailed studies were then conducted to understand the bending mechanism of the BNNTs. Formations of reversible ripples were observed and described in terms of thermodynamic energy of the system. Fracture failure of BNNTs were initiated at the outermost walls and characterized to be brittle. Second, the electrical properties of individual BNNTs were studied. Results showed that the bandgap and electronic properties of BNNTs can be engineered by means of applied strain. It was found that the conductivity, electron concentration and carrier mobility of BNNTs can be tuned as a function of applied stress. Although, BNNTs are considered to be candidate for field emission applications, observations revealed that their properties degrade upon cycles of emissions. Results showed that due to the high emission current density, the temperature of the sample was increased and reached to the decomposition temperature at which the B-N bonds start to break. In addition to BNNTs, we have also performed in-situ study on the electrochemical properties of silicon nanorods (SiNRs). Specifically, lithiation and delithiation of SiNRs were studied by our STM-TEM system. Our observations showed the direct formation of Li22Si5 phases as a result of lithium intercalation. Radial expansion of the anode materials were observed and characterized in terms of size-scale. Later, the formation and growth of the lithium fibers on the surface of the anode materials were observed and studied. Results revealed the formation of lithium islands inside the ionic liquid electrolyte which then grew as Li dendrite toward the cathode material.
Resumo:
Disuse osteoporosis is a condition in which reduced mechanical loading (e.g. bed-rest, immobilization, or paralysis) results in unbalanced bone turnover. The American black bear is a unique, naturally occurring model for the prevention of disuse osteoporosis. Bears remain mostly inactive for up to half a year of hibernation annually, yet they do not lose bone mechanical strength or structural properties throughout hibernation. The long-term goal of this study is to determine the biological mechanism through which bears maintain bone during hibernation. This mechanism could pinpoint new signaling pathway targets for the development of drugs for osteoporosis prevention. In this study, bone specific alkaline phosphatase (BSALP), a marker of osteoblast activity, and tartrate resistant acid phosphatase (TRACP), a marker of osteoclast number, were quantified in the serum of hibernating and active black bears. BSALP and TRACP decreased during hibernation, suggesting a balanced reduction in bone turnover. This decrease in BSALP and TRACP were correlated positively to serum adiponectin and inversely to serum neuropeptide Y, suggesting a possible role of these hormones in suppressing bone turnover during hibernation. Osteocalcin (OCN) and undercarboxylated OCN increased dramatically in the serum of hibernating bears. These increases were inversely correlated with adiponectin, glucose, and serotonin, suggesting that OCN may have a unique role in energy homeostasis during hibernation. Finally, MC3T3-E1 osteoblasts were cultured in the serum from active and hibernating bears, and seasonal cell responses were quantified. Cells cultured in serum from hibernating bears had a reduced caspase-3/7 response, and more living cells, after apoptotic threat. The caspase-3/7 response was positively correlated to serum adiponectin and to gene expression of OCN and Runx2, suggesting that reduced caspase-3/7 activity may be related to the reduced differentiation potential of osteoblasts in hibernation serum, and that adiponectin is a potential effector hormone. In summary, the activities of osteoblasts and osteoclasts are reduced during hibernation in bears. This reduced turnover is due, in part, to hormonal control. Further study of potential effectors adiponectin and neuropeptide Y may provide insight into the biological mechanism through which bears maintain bone throughout hibernation.
Resumo:
Menisci are anchored to the tibia by means of ligament-like structures called meniscal attachments. Failure material properties of bovine meniscal attachments were obtained. There were no significant differences in the structural properties or ultimate stress between the meniscal attachments (p>0.05). Furthermore, Glycosaminoglycan (GAG) fraction and crimping frequency was obtained for each attachment using histology and differential interference contrast (DIC) respectively. Results showed that the anterior attachment’s insertion had the greatest GAG fraction when compared to the posterior attachment’s insertion. Crimp frequency of the collagen fibrils was homogeneous along the length. Moreover, Scanning Electron Microscopy (SEM) technique was used to reveal the morphology of collagen in human meniscal attachments. Its midsubstance was composed of collagen fascicles running parallel to the longitudinal axis, with a few fibrils running obliquely, and others transversely. There were no differences between attachments for crimping angle or length. Since ligamentous-type tissues are comprised mainly of water, the fluid pressure within meniscal horn attachments was measured using a Fiber Optic Microsensor (FOM). Four cadaveric human joints were subjected to 2BW compressive load (ramp) at 0-, 15-, and 30-degrees of flexion for a minute and then the load was hold for 20 minutes (equilibrium). There were significant differences between 0- and 15- (p1– c5) were obtained. Significant differences were found on the straightened collagen fibers coefficient (c5) between MP and LA attachments (p
Resumo:
The accuracy of simulating the aerodynamics and structural properties of the blades is crucial in the wind-turbine technology. Hence the models used to implement these features need to be very precise and their level of detailing needs to be high. With the variety of blade designs being developed the models should be versatile enough to adapt to the changes required by every design. We are going to implement a combination of numerical models which are associated with the structural and the aerodynamic part of the simulation using the computational power of a parallel HPC cluster. The structural part models the heterogeneous internal structure of the beam based on a novel implementation of the Generalized Timoshenko Beam Model Technique.. Using this technique the 3-D structure of the blade is reduced into a 1-D beam which is asymptotically equivalent. This reduces the computational cost of the model without compromising its accuracy. This structural model interacts with the Flow model which is a modified version of the Blade Element Momentum Theory. The modified version of the BEM accounts for the large deflections of the blade and also considers the pre-defined structure of the blade. The coning, sweeping of the blade, tilt of the nacelle and the twist of the sections along the blade length are all computed by the model which aren’t considered in the classical BEM theory. Each of these two models provides feedback to the other and the interactive computations lead to more accurate outputs. We successfully implemented the computational models to analyze and simulate the structural and aerodynamic aspects of the blades. The interactive nature of these models and their ability to recompute data using the feedback from each other makes this code more efficient than the commercial codes available. In this thesis we start off with the verification of these models by testing it on the well-known benchmark blade for the NREL-5MW Reference Wind Turbine, an alternative fixed-speed stall-controlled blade design proposed by Delft University, and a novel alternative design that we proposed for a variable-speed stall-controlled turbine, which offers the potential for more uniform power control and improved annual energy production.. To optimize the power output of the stall-controlled blade we modify the existing designs and study their behavior using the aforementioned aero elastic model.
Resumo:
One-dimensional nanostructures initiated new aspects to the materials applications due to their superior properties compared to the bulk materials. Properties of nanostructures have been characterized by many techniques and used for various device applications. However, simultaneous correlation between the physical and structural properties of these nanomaterials has not been widely investigated. Therefore, it is necessary to perform in-situ study on the physical and structural properties of nanomaterials to understand their relation. In this work, we will use a unique instrument to perform real time atomic force microscopy (AFM) and scanning tunneling microscopy (STM) of nanomaterials inside a transmission electron microscopy (TEM) system. This AFM/STM-TEM system is used to investigate the mechanical, electrical, and electrochemical properties of boron nitride nanotubes (BNNTs) and Silicon nanorods (SiNRs). BNNTs are one of the subjects of this PhD research due to their comparable, and in some cases superior, properties compared to carbon nanotubes. Therefore, to further develop their applications, it is required to investigate these characteristics in atomic level. In this research, the mechanical properties of multi-walled BNNTs were first studied. Several tests were designed to study and characterize their real-time deformation behavior to the applied force. Observations revealed that BNNTs possess highly flexible structures under applied force. Detailed studies were then conducted to understand the bending mechanism of the BNNTs. Formations of reversible ripples were observed and described in terms of thermodynamic energy of the system. Fracture failure of BNNTs were initiated at the outermost walls and characterized to be brittle. Second, the electrical properties of individual BNNTs were studied. Results showed that the bandgap and electronic properties of BNNTs can be engineered by means of applied strain. It was found that the conductivity, electron concentration and carrier mobility of BNNTs can be tuned as a function of applied stress. Although, BNNTs are considered to be candidate for field emission applications, observations revealed that their properties degrade upon cycles of emissions. Results showed that due to the high emission current density, the temperature of the sample was increased and reached to the decomposition temperature at which the B-N bonds start to break. In addition to BNNTs, we have also performed in-situ study on the electrochemical properties of silicon nanorods (SiNRs). Specifically, lithiation and delithiation of SiNRs were studied by our STM-TEM system. Our observations showed the direct formation of Li22Si5 phases as a result of lithium intercalation. Radial expansion of the anode materials were observed and characterized in terms of size-scale. Later, the formation and growth of the lithium fibers on the surface of the anode materials were observed and studied. Results revealed the formation of lithium islands inside the ionic liquid electrolyte which then grew as Li dendrite toward the cathode material.