2 resultados para Statistics|Economics, Finance|Engineering, Electronics and Electrical|Physics, General
em Digital Commons - Michigan Tech
Resumo:
Undergraduate education has a historical tradition of preparing students to meet the problem-solving challenges they will encounter in work, civic, and personal contexts. This thesis research was conducted to study the role of rhetoric in engineering problem solving and decision making and to pose pedagogical strategies for preparing undergraduate students for workplace problem solving. Exploratory interviews with engineering managers as well as the heuristic analyses of engineering A3 project planning reports suggest that Aristotelian rhetorical principles are critical to the engineer's success: Engineers must ascertain the rhetorical situation surrounding engineering problems; apply and adapt invention heuristics to conduct inquiry; draw from their investigation to find innovative solutions; and influence decision making by navigating workplace decision-making systems and audiences using rhetorically constructed discourse. To prepare undergraduates for workplace problem solving, university educators are challenged to help undergraduates understand the exigence and realize the kairotic potential inherent in rhetorical problem solving. This thesis offers pedagogical strategies that focus on mentoring learning communities in problem-posing experiences that are situated in many disciplinary, work, and civic contexts. Undergraduates build a flexible rhetorical technê for problem solving as they navigate the nuances of relevant problem-solving systems through the lens of rhetorical practice.
Resumo:
The physics of the operation of singe-electron tunneling devices (SEDs) and singe-electron tunneling transistors (SETs), especially of those with multiple nanometer-sized islands, has remained poorly understood in spite of some intensive experimental and theoretical research. This computational study examines the current-voltage (IV) characteristics of multi-island single-electron devices using a newly developed multi-island transport simulator (MITS) that is based on semi-classical tunneling theory and kinetic Monte Carlo simulation. The dependence of device characteristics on physical device parameters is explored, and the physical mechanisms that lead to the Coulomb blockade (CB) and Coulomb staircase (CS) characteristics are proposed. Simulations using MITS demonstrate that the overall IV characteristics in a device with a random distribution of islands are a result of a complex interplay among those factors that affect the tunneling rates that are fixed a priori (e.g. island sizes, island separations, temperature, gate bias, etc.), and the evolving charge state of the system, which changes as the source-drain bias (VSD) is changed. With increasing VSD, a multi-island device has to overcome multiple discrete energy barriers (up-steps) before it reaches the threshold voltage (Vth). Beyond Vth, current flow is rate-limited by slow junctions, which leads to the CS structures in the IV characteristic. Each step in the CS is characterized by a unique distribution of island charges with an associated distribution of tunneling probabilities. MITS simulation studies done on one-dimensional (1D) disordered chains show that longer chains are better suited for switching applications as Vth increases with increasing chain length. They are also able to retain CS structures at higher temperatures better than shorter chains. In sufficiently disordered 2D systems, we demonstrate that there may exist a dominant conducting path (DCP) for conduction, which makes the 2D device behave as a quasi-1D device. The existence of a DCP is sensitive to the device structure, but is robust with respect to changes in temperature, gate bias, and VSD. A side gate in 1D and 2D systems can effectively control Vth. We argue that devices with smaller island sizes and narrower junctions may be better suited for practical applications, especially at room temperature.