5 resultados para State of Engineering Education for Sustainable Development, Energy Efficiency, National Survey, Australia

em Digital Commons - Michigan Tech


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Advances in information technology and global data availability have opened the door for assessments of sustainable development at a truly macro scale. It is now fairly easy to conduct a study of sustainability using the entire planet as the unit of analysis; this is precisely what this work set out to accomplish. The study began by examining some of the best known composite indicator frameworks developed to measure sustainability at the country level today. Most of these were found to value human development factors and a clean local environment, but to gravely overlook consumption of (remote) resources in relation to nature’s capacity to renew them, a basic requirement for a sustainable state. Thus, a new measuring standard is proposed, based on the Global Sustainability Quadrant approach. In a two‐dimensional plot of nations’ Human Development Index (HDI) vs. their Ecological Footprint (EF) per capita, the Sustainability Quadrant is defined by the area where both dimensions satisfy the minimum conditions of sustainable development: an HDI score above 0.8 (considered ‘high’ human development), and an EF below the fair Earth‐share of 2.063 global hectares per person. After developing methods to identify those countries that are closest to the Quadrant in the present‐day and, most importantly, those that are moving towards it over time, the study tackled the question: what indicators of performance set these countries apart? To answer this, an analysis of raw data, covering a wide array of environmental, social, economic, and governance performance metrics, was undertaken. The analysis used country rank lists for each individual metric and compared them, using the Pearson Product Moment Correlation function, to the rank lists generated by the proximity/movement relative to the Quadrant measuring methods. The analysis yielded a list of metrics which are, with a high degree of statistical significance, associated with proximity to – and movement towards – the Quadrant; most notably: Favorable for sustainable development: use of contraception, high life expectancy, high literacy rate, and urbanization. Unfavorable for sustainable development: high GDP per capita, high language diversity, high energy consumption, and high meat consumption. A momentary gain, but a burden in the long‐run: high carbon footprint and debt. These results could serve as a solid stepping stone for the development of more reliable composite index frameworks for assessing countries’ sustainability.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This thesis studies the minimization of the fuel consumption for a Hybrid Electric Vehicle (HEV) using Model Predictive Control (MPC). The presented MPC – based controller calculates an optimal sequence of control inputs to a hybrid vehicle using the measured plant outputs, the current dynamic states, a system model, system constraints, and an optimization cost function. The MPC controller is developed using Matlab MPC control toolbox. To evaluate the performance of the presented controller, a power-split hybrid vehicle, 2004 Toyota Prius, is selected. The vehicle uses a planetary gear set to combine three power components, an engine, a motor, and a generator, and transfer energy from these components to the vehicle wheels. The planetary gear model is developed based on the Willis’s formula. The dynamic models of the engine, the motor, and the generator, are derived based on their dynamics at the planetary gear. The MPC controller for HEV energy management is validated in the MATLAB/Simulink environment. Both the step response performance (a 0 – 60 mph step input) and the driving cycle tracking performance are evaluated. Two standard driving cycles, Urban Dynamometer Driving Schedule (UDDS) and Highway Fuel Economy Driving Schedule (HWFET), are used in the evaluation tests. For the UDDS and HWFET driving cycles, the simulation results, the fuel consumption and the battery state of charge, using the MPC controller are compared with the simulation results using the original vehicle model in Autonomie. The MPC approach shows the feasibility to improve vehicle performance and minimize fuel consumption.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Biofuels are an increasingly important component of worldwide energy supply. This research aims to understand the pathways and impacts of biofuels production, and to improve these processes to make them more efficient. In Chapter 2, a life cycle assessment (LCA) is presented for cellulosic ethanol production from five potential feedstocks of regional importance to the upper Midwest - hybrid poplar, hybrid willow, switchgrass, diverse prairie grasses, and logging residues - according to the requirements of Renewable Fuel Standard (RFS). Direct land use change emissions are included for the conversion of abandoned agricultural land to feedstock production, and computer models of the conversion process are used in order to determine the effect of varying biomass composition on overall life cycle impacts. All scenarios analyzed here result in greater than 60% reduction in greenhouse gas emissions relative to petroleum gasoline. Land use change effects were found to contribute significantly to the overall emissions for the first 20 years after plantation establishment. Chapter 3 is an investigation of the effects of biomass mixtures on overall sugar recovery from the combined processes of dilute acid pretreatment and enzymatic hydrolysis. Biomass mixtures studied were aspen, a hardwood species well suited to biochemical processing; balsam, a high-lignin softwood species, and switchgrass, an herbaceous energy crop with high ash content. A matrix of three different dilute acid pretreatment severities and three different enzyme loading levels was used to characterize interactions between pretreatment and enzymatic hydrolysis. Maximum glucose yield for any species was 70% oftheoretical for switchgrass, and maximum xylose yield was 99.7% of theoretical for aspen. Supplemental β-glucosidase increased glucose yield from enzymatic hydrolysis by an average of 15%, and total sugar recoveries for mixtures could be predicted to within 4% by linear interpolation of the pure species results. Chapter 4 is an evaluation of the potential for producing Trichoderma reesei cellulose hydrolases in the Kluyveromyces lactis yeast expression system. The exoglucanases Cel6A and Cel7A, and the endoglucanase Cel7B were inserted separately into the K. lactis and the enzymes were analyzed for activity on various substrates. Recombinant Cel7B was found to be active on carboxymethyl cellulose and Avicel powdered cellulose substrates. Recombinant Cel6A was also found to be active on Avicel. Recombinant Cel7A was produced, but no enzymatic activity was detected on any substrate. Chapter 5 presents a new method for enzyme improvement studies using enzyme co-expression and yeast growth rate measurements as a potential high-throughput expression and screening system in K. lactis yeast. Two different K. lactis strains were evaluated for their usefulness in growth screening studies, one wild-type strain and one strain which has had the main galactose metabolic pathway disabled. Sequential transformation and co-expression of the exoglucanase Cel6A and endoglucanase Cel7B was performed, and improved hydrolysis rates on Avicel were detectable in the cell culture supernatant. Future work should focus on hydrolysis of natural substrates, developing the growth screening method, and utilizing the K. lactis expression system for directed evolution of enzymes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

For a microgrid with a high penetration level of renewable energy, energy storage use becomes more integral to the system performance due to the stochastic nature of most renewable energy sources. This thesis examines the use of droop control of an energy storage source in dc microgrids in order to optimize a global cost function. The approach involves using a multidimensional surface to determine the optimal droop parameters based on load and state of charge. The optimal surface is determined using knowledge of the system architecture and can be implemented with fully decentralized source controllers. The optimal surface control of the system is presented. Derivations of a cost function along with the implementation of the optimal control are included. Results were verified using a hardware-in-the-loop system.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This thesis presents a load sharing method applied in a distributed micro grid system. The goal of this method is to balance the state-of-charge (SoC) of each parallel connected battery and make it possible to detect the average SoC of the system by measuring bus voltage for all connected modules. In this method the reference voltage for each battery converter is adjusted by adding a proportional SoC factor. Under such setting the battery with a higher SoC will output more power, whereas the one with lower SoC gives out less. Therefore the higher SoC battery will use its energy faster than the lower ones, and eventually the SoC and output power of each battery will converge. And because the reference voltage is related to SoC status, the information of the average SoC in this system could be shared for all modules by measuring bus voltage. The SoC balancing speed is related to the SoC droop factors. This SoC-based load sharing control system is analyzed in feasibility and stability. Simulations in MATLAB/Simulink are presented, which indicate that this control scheme could balance the battery SoCs as predicted. The observation of SoC sharing through bus voltage was validated in both software simulation and hardware experiments. It could be of use to non-communicated distributed power system in load shedding and power planning.