4 resultados para Standards based education
em Digital Commons - Michigan Tech
Resumo:
Project-based education and portfolio assessments are at the forefront of educational research. This research follows the implementation of a project-based unit in a high school physics class. Students played the role of an engineering firm who designed, built and tested file folder bridges. The purpose was to determine if projectbased learning could improve student attitude toward science and related careers like engineering. Teams of students presented their work in a portfolio for a final assessment of the process of designing, building and testing their bridges.
Resumo:
State standardized testing has always been a tool to measure a school’s performance and to help evaluate school curriculum. However, with the school of choice legislation in 1992, the MEAP test became a measuring stick to grade schools by and a major tool in attracting school of choice students. Now, declining enrollment and a state budget struggling to stay out of the red have made school of choice students more important than ever before. MEAP scores have become the deciding factor in some cases. For the past five years, the Hancock Middle School staff has been working hard to improve their students’ MEAP scores in accordance with President Bush's “No Child Left Behind” legislation. In 2005, the school was awarded a grant that enabled staff to work for two years on writing and working towards school goals that were based on the improvement of MEAP scores in writing and math. As part of this effort, the school purchased an internet-based program geared at giving students practice on state content standards. This study examined the results of efforts by Hancock Middle School to help improve student scores in mathematics on the MEAP test through the use of an online program called “Study Island.” In the past, the program was used to remediate students, and as a review with an incentive at the end of the year for students completing a certain number of objectives. It had also been used as a review before upcoming MEAP testing in the fall. All of these methods may have helped a few students perform at an increased level on their standardized test, but the question remained of whether a sustained use of the program in a classroom setting would increase an understanding of concepts and performance on the MEAP for the masses. This study addressed this question. Student MEAP scores and Study Island data from experimental and comparison groups of students were compared to understand how a sustained use of Study Island in the classroom would impact student test scores on the MEAP. In addition, these data were analyzed to determine whether Study Island results provide a good indicator of students’ MEAP performance. The results of the study suggest that there were limited benefits related to sustained use of Study Island and gave some indications about the effectiveness of the mathematics curriculum at Hancock Middle School. These results and implications for instruction are discussed.
Resumo:
The reported research project involved studying how teaching science using demonstrations, inquiry-based cooperative learning groups, or a combination of the two methods affected sixth grade students’ understanding of air pressure and density. Three different groups of students were each taught the two units using different teaching methods. Group one learned about the topics through both demonstrations and inquirybased cooperative learning, whereas group two only viewed demonstrations, and group three only participated in inquiry-based learning in cooperative learning groups. The study was designed to answer the following two questions: 1. Which teaching strategy works best for supporting student understanding of air pressure and density: demonstrations, inquirybased labs in cooperative learning groups, or a combination of the two? 2. And what effect does the time spent engaging in a particular learning experience (demonstrations or labs) have on student learning? Overall, the data did not provide sufficient evidence that one method of learning was more effective than the others. The results also suggested that spending more time on a unit does not necessarily equate to a better understanding of the concepts by the students. Implications for science instruction are discussed.