3 resultados para Stalling (Aerodynamics)

em Digital Commons - Michigan Tech


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The focus of the current dissertation is to study qualitatively the underlying physics of vortex-shedding and wake dynamics in long aspect-ratio aerodynamics in incompressible viscous flow through the use of the KLE method. We carried out a long series of numerical experiments in the cases of flow around the cylinder at low Reynolds numbers. The study of flow at low Reynolds numbers provides an insight in the fluid physics and also plays a critical role when applying to stalled turbine rotors. Many of the conclusions about the qualitative nature of the physical mechanisms characterizing vortex formation, shedding and further interaction analyzed here at low Re could be extended to other Re regimes and help to understand the separation of the boundary layers in airfoils and other aerodynamic surfaces. In the long run, it aims to provide a better understanding of the complex multi-physics problems involving fluid-structure-control interaction through improved mathematical computational models of the multi-physics process. Besides the scientific conclusions produced, the research work on streamlined and bluff-body condition will also serve as a valuable guide for the future design of blade aerodynamics and the placement of wind turbines and hydrakinetic turbines, increasing the efficiency in the use of expensive workforce, supplies, and infrastructure. After the introductory section describing the main fields of application of wind power and hydrokinetic turbines, we describe the main features and theoretical background of the numerical method used here. Then, we present the analysis of the numerical experimentation results for the oscillatory regime right before the onset of vortex shedding for circular cylinders. We verified the wake length of the closed near-wake behind the cylinder and analysed the decay of the wake at the wake formation region, and then studied the St-Re relationship at the Reynolds numbers before the wake sheds compared to the experimental data. We found a theoretical model that describes the time evolution of the amplitude of fluctuations in the vorticity field on the twin vortex wake, which accurately matches the numerical results in terms of the frequency of the oscillation and rate of decay. We also proposed a model based on an analog circuit that is able to interpret the concerning flow by reducing the number of degrees of freedom. It follows the idea of the non-linear oscillator and resembles the dynamics mechanism of the closed near-wake with a common configured sine wave oscillator. This low-dimensional circuital model may also help to understand the underlying physical mechanisms, related to vorticity transport, that give origin to those oscillations.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The accuracy of simulating the aerodynamics and structural properties of the blades is crucial in the wind-turbine technology. Hence the models used to implement these features need to be very precise and their level of detailing needs to be high. With the variety of blade designs being developed the models should be versatile enough to adapt to the changes required by every design. We are going to implement a combination of numerical models which are associated with the structural and the aerodynamic part of the simulation using the computational power of a parallel HPC cluster. The structural part models the heterogeneous internal structure of the beam based on a novel implementation of the Generalized Timoshenko Beam Model Technique.. Using this technique the 3-D structure of the blade is reduced into a 1-D beam which is asymptotically equivalent. This reduces the computational cost of the model without compromising its accuracy. This structural model interacts with the Flow model which is a modified version of the Blade Element Momentum Theory. The modified version of the BEM accounts for the large deflections of the blade and also considers the pre-defined structure of the blade. The coning, sweeping of the blade, tilt of the nacelle and the twist of the sections along the blade length are all computed by the model which aren’t considered in the classical BEM theory. Each of these two models provides feedback to the other and the interactive computations lead to more accurate outputs. We successfully implemented the computational models to analyze and simulate the structural and aerodynamic aspects of the blades. The interactive nature of these models and their ability to recompute data using the feedback from each other makes this code more efficient than the commercial codes available. In this thesis we start off with the verification of these models by testing it on the well-known benchmark blade for the NREL-5MW Reference Wind Turbine, an alternative fixed-speed stall-controlled blade design proposed by Delft University, and a novel alternative design that we proposed for a variable-speed stall-controlled turbine, which offers the potential for more uniform power control and improved annual energy production.. To optimize the power output of the stall-controlled blade we modify the existing designs and study their behavior using the aforementioned aero elastic model.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Wind energy has been one of the most growing sectors of the nation’s renewable energy portfolio for the past decade, and the same tendency is being projected for the upcoming years given the aggressive governmental policies for the reduction of fossil fuel dependency. Great technological expectation and outstanding commercial penetration has shown the so called Horizontal Axis Wind Turbines (HAWT) technologies. Given its great acceptance, size evolution of wind turbines over time has increased exponentially. However, safety and economical concerns have emerged as a result of the newly design tendencies for massive scale wind turbine structures presenting high slenderness ratios and complex shapes, typically located in remote areas (e.g. offshore wind farms). In this regard, safety operation requires not only having first-hand information regarding actual structural dynamic conditions under aerodynamic action, but also a deep understanding of the environmental factors in which these multibody rotating structures operate. Given the cyclo-stochastic patterns of the wind loading exerting pressure on a HAWT, a probabilistic framework is appropriate to characterize the risk of failure in terms of resistance and serviceability conditions, at any given time. Furthermore, sources of uncertainty such as material imperfections, buffeting and flutter, aeroelastic damping, gyroscopic effects, turbulence, among others, have pleaded for the use of a more sophisticated mathematical framework that could properly handle all these sources of indetermination. The attainable modeling complexity that arises as a result of these characterizations demands a data-driven experimental validation methodology to calibrate and corroborate the model. For this aim, System Identification (SI) techniques offer a spectrum of well-established numerical methods appropriated for stationary, deterministic, and data-driven numerical schemes, capable of predicting actual dynamic states (eigenrealizations) of traditional time-invariant dynamic systems. As a consequence, it is proposed a modified data-driven SI metric based on the so called Subspace Realization Theory, now adapted for stochastic non-stationary and timevarying systems, as is the case of HAWT’s complex aerodynamics. Simultaneously, this investigation explores the characterization of the turbine loading and response envelopes for critical failure modes of the structural components the wind turbine is made of. In the long run, both aerodynamic framework (theoretical model) and system identification (experimental model) will be merged in a numerical engine formulated as a search algorithm for model updating, also known as Adaptive Simulated Annealing (ASA) process. This iterative engine is based on a set of function minimizations computed by a metric called Modal Assurance Criterion (MAC). In summary, the Thesis is composed of four major parts: (1) development of an analytical aerodynamic framework that predicts interacted wind-structure stochastic loads on wind turbine components; (2) development of a novel tapered-swept-corved Spinning Finite Element (SFE) that includes dampedgyroscopic effects and axial-flexural-torsional coupling; (3) a novel data-driven structural health monitoring (SHM) algorithm via stochastic subspace identification methods; and (4) a numerical search (optimization) engine based on ASA and MAC capable of updating the SFE aerodynamic model.