2 resultados para Spinal cord injuries

em Digital Commons - Michigan Tech


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Research on rehabilitation showed that appropriate and repetitive mechanical movements can help spinal cord injured individuals to restore their functional standing and walking. The objective of this paper was to achieve appropriate and repetitive joint movements and approximately normal gait through the PGO by replicating normal walking, and to minimize the energy consumption for both patients and the device. A model based experimental investigative approach is presented in this dissertation. First, a human model was created in Ideas and human walking was simulated in Adams. The main feature of this model was the foot ground contact model, which had distributed contact points along the foot and varied viscoelasticity. The model was validated by comparison of simulated results of normal walking and measured ones from the literature. It was used to simulate current PGO walking to investigate the real causes of poor function of the current PGO, even though it had joint movements close to normal walking. The direct cause was one leg moving at a time, which resulted in short step length and no clearance after toe off. It can not be solved by simply adding power on both hip joints. In order to find a better answer, a PGO mechanism model was used to investigate different walking mechanisms by locking or releasing some joints. A trade-off between energy consumption, control complexity and standing position was found. Finally a foot release PGO virtual model was created and simulated and only foot release mechanism was developed into a prototype. Both the release mechanism and the design of foot release were validated through the experiment by adding the foot release on the current PGO. This demonstrated an advancement in improving functional aspects of the current PGO even without a whole physical model of foot release PGO for comparison.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Disuse osteoporosis is a problem for people with spinal cord injury or stroke, patients confined to bed rest, and astronauts exposed to microgravity. Unlike most mammals however, bears have been shown to prevent bone loss during hibernation, a seasonal period of disuse. Similarly, studies in ground squirrels indicate preservation of whole bone strength during hibernation, though evidence suggests there may be some increased osteocytic osteolysis. Uncovering the mechanism by which these animals prevent bone loss during hibernation could lead to an improved treatment for osteoporosis in humans. Marmots are a good animal model for these studies because they are small enough to easily house in an animal facility yet still utilize intracortical remodeling like humans and bears, and unlike smaller rodents like squirrels. Marmots preserve bone mechanical and microstructural properties during hibernation. Bone mechanical and geometrical properties are not diminished in post-hibernation samples compared to pre-hibernation samples. Mineral content, measured by ash fraction, was higher in post-hibernation samples (p = 0.0003). Haversian porosity as well as remodeling cavity density were not different (p > 0.38) between pre- and post-hibernation samples. Similarly, average lacunar area, lacunar density, and lacunar porosity were all lower (p < 0.0001) in post-hibernation samples. Trabecular thickness was larger in posthibernation samples (p = 0.0058). Bone volume fraction was not different between groups, but approached significance (p = 0.0725). Further studies in marmots and other hibernators could help uncover the mechanism that allows hibernators to prevent disuse osteoporosis during hibernation.