4 resultados para Spatial pattern and association
em Digital Commons - Michigan Tech
Resumo:
This dissertation has three separate parts: the first part deals with the general pedigree association testing incorporating continuous covariates; the second part deals with the association tests under population stratification using the conditional likelihood tests; the third part deals with the genome-wide association studies based on the real rheumatoid arthritis (RA) disease data sets from Genetic Analysis Workshop 16 (GAW16) problem 1. Many statistical tests are developed to test the linkage and association using either case-control status or phenotype covariates for family data structure, separately. Those univariate analyses might not use all the information coming from the family members in practical studies. On the other hand, the human complex disease do not have a clear inheritance pattern, there might exist the gene interactions or act independently. In part I, the new proposed approach MPDT is focused on how to use both the case control information as well as the phenotype covariates. This approach can be applied to detect multiple marker effects. Based on the two existing popular statistics in family studies for case-control and quantitative traits respectively, the new approach could be used in the simple family structure data set as well as general pedigree structure. The combined statistics are calculated using the two statistics; A permutation procedure is applied for assessing the p-value with adjustment from the Bonferroni for the multiple markers. We use simulation studies to evaluate the type I error rates and the powers of the proposed approach. Our results show that the combined test using both case-control information and phenotype covariates not only has the correct type I error rates but also is more powerful than the other existing methods. For multiple marker interactions, our proposed method is also very powerful. Selective genotyping is an economical strategy in detecting and mapping quantitative trait loci in the genetic dissection of complex disease. When the samples arise from different ethnic groups or an admixture population, all the existing selective genotyping methods may result in spurious association due to different ancestry distributions. The problem can be more serious when the sample size is large, a general requirement to obtain sufficient power to detect modest genetic effects for most complex traits. In part II, I describe a useful strategy in selective genotyping while population stratification is present. Our procedure used a principal component based approach to eliminate any effect of population stratification. The paper evaluates the performance of our procedure using both simulated data from an early study data sets and also the HapMap data sets in a variety of population admixture models generated from empirical data. There are one binary trait and two continuous traits in the rheumatoid arthritis dataset of Problem 1 in the Genetic Analysis Workshop 16 (GAW16): RA status, AntiCCP and IgM. To allow multiple traits, we suggest a set of SNP-level F statistics by the concept of multiple-correlation to measure the genetic association between multiple trait values and SNP-specific genotypic scores and obtain their null distributions. Hereby, we perform 6 genome-wide association analyses using the novel one- and two-stage approaches which are based on single, double and triple traits. Incorporating all these 6 analyses, we successfully validate the SNPs which have been identified to be responsible for rheumatoid arthritis in the literature and detect more disease susceptibility SNPs for follow-up studies in the future. Except for chromosome 13 and 18, each of the others is found to harbour susceptible genetic regions for rheumatoid arthritis or related diseases, i.e., lupus erythematosus. This topic is discussed in part III.
Resumo:
The Zagros oak forests in Western Iran are critically important to the sustainability of the region. These forests have undergone dramatic declines in recent decades. We evaluated the utility of the non-parametric Random Forest classification algorithm for land cover classification of Zagros landscapes, and selected the best spatial and spectral predictive variables. The algorithm resulted in high overall classification accuracies (>85%) and also equivalent classification accuracies for the datasets from the three different sensors. We evaluated the associations between trends in forest area and structure with trends in socioeconomic and climatic conditions, to identify the most likely driving forces creating deforestation and landscape structure change. We used available socioeconomic (urban and rural population, and rural income), and climatic (mean annual rainfall and mean annual temperature) data for two provinces in northern Zagros. The most correlated driving force of forest area loss was urban population, and climatic variables to a lesser extent. Landscape structure changes were more closely associated with rural population. We examined the effects of scale changes on the results from spatial pattern analysis. We assessed the impacts of eight years of protection in a protected area in northern Zagros at two different scales (both grain and extent). The effects of protection on the amount and structure of forests was scale dependent. We evaluated the nature and magnitude of changes in forest area and structure over the entire Zagros region from 1972 to 2009. We divided the Zagros region in 167 Landscape Units and developed two measures— Deforestation Sensitivity (DS) and Connectivity Sensitivity (CS) — for each landscape unit as the percent of the time steps that forest area and ECA experienced a decrease of greater than 10% in either measure. A considerable loss in forest area and connectivity was detected, but no sudden (nonlinear) changes were detected at the spatial and temporal scale of the study. Connectivity loss occurred more rapidly than forest loss due to the loss of connecting patches. More connectivity was lost in southern Zagros due to climatic differences and different forms of traditional land use.
Resumo:
New volumetric and mass flux estimates have been calculated for the Kenya Rift. Spatial and temporal histories for volcanic eruptions, lacustrine deposition, and hominin fossil sites are presented, aided by the compilation of a new digital geologic map. Distribution of volcanism over time indicates several periods of southward expansion followed by relative positional stasis. Volcanism occurs throughout the activated rift length, with no obvious abandonment as the rift system migrated. The main exception is a period of volcanic concentration around 10 Ma, when activity was constrained within 2° of the equator. Volumes derived from seismic data indicate a total volume of c. 310,000 km3 (2.47 x 1010 kg/yr ), which is significantly more than the map-derived volumes found here or published previously. Map-based estimates are likely affected by a bias against recognizing small volume events in the older record. Such events are, however, the main driver of erupted volume over the last 5 Ma. A technique developed here to counter this bias results in convergence of the two volume estimation techniques. Relative erupted composition over time is variable. Overall, the erupted material has a mafic to silicic ratio of 0.9:1. Basalts are distinctly more common in the Turkana region, which previously experienced Mesozoic rifting. Despite the near equal ratio of mafic to silicic products, the Kenya Rift otherwise fits the definition of a SLIP. It is proposed that the compositions would better fit the published definition if the Turkana region was not twice-rifted. Lacustrine sedimentation post-dates initial volcanism by about 5 million years, and follows the same volcanic trends, showing south and eastward migration over time. This sedimentation delay is likely related to timing of fault displacements. Evidence of hominin habitation is distinctly abundant in the northern and southern sections of the Kenya Rift, but there is an observed gap in the equatorial rift between 4 and 0.5 million years ago. After 0.5 Ma, sites appear to progress towards the equator. The pattern and timing of hominid site distributions suggests that the equatorial gap in habitation may be the result of active volcanic avoidance.
Resumo:
Characterizing the spatial scaling and dynamics of convective precipitation in mountainous terrain and the development of downscaling methods to transfer precipitation fields from one scale to another is the overall motivation for this research. Substantial progress has been made on characterizing the space-time organization of Midwestern convective systems and tropical rainfall, which has led to the development of statistical/dynamical downscaling models. Space-time analysis and downscaling of orographic precipitation has received less attention due to the complexities of topographic influences. This study uses multiscale statistical analysis to investigate the spatial scaling of organized thunderstorms that produce heavy rainfall and flooding in mountainous regions. Focus is placed on the eastern and western slopes of the Appalachian region and the Front Range of the Rocky Mountains. Parameter estimates are analyzed over time and attention is given to linking changes in the multiscale parameters with meteorological forcings and orographic influences on the rainfall. Influences of geographic regions and predominant orographic controls on trends in multiscale properties of precipitation are investigated. Spatial resolutions from 1 km to 50 km are considered. This range of spatial scales is needed to bridge typical scale gaps between distributed hydrologic models and numerical weather prediction (NWP) forecasts and attempts to address the open research problem of scaling organized thunderstorms and convection in mountainous terrain down to 1-4 km scales.