11 resultados para Spatial dynamic modeling

em Digital Commons - Michigan Tech


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The objective of this research was to develop a high-fidelity dynamic model of a parafoilpayload system with respect to its application for the Ship Launched Aerial Delivery System (SLADS). SLADS is a concept in which cargo can be transfered from ship to shore using a parafoil-payload system. It is accomplished in two phases: An initial towing phase when the glider follows the towing vessel in a passive lift mode and an autonomous gliding phase when the system is guided to the desired point. While many previous researchers have analyzed the parafoil-payload system when it is released from another airborne vehicle, limited work has been done in the area of towing up the system from ground or sea. One of the main contributions of this research was the development of a nonlinear dynamic model of a towed parafoil-payload system. After performing an extensive literature review of the existing methods of modeling a parafoil-payload system, a five degree-of-freedom model was developed. The inertial and geometric properties of the system were investigated to predict accurate results in the simulation environment. Since extensive research has been done in determining the aerodynamic characteristics of a paraglider, an existing aerodynamic model was chosen to incorporate the effects of air flow around the flexible paraglider wing. During the towing phase, it is essential that the parafoil-payload system follow the line of the towing vessel path to prevent an unstable flight condition called ‘lockout’. A detailed study of the causes of lockout, its mathematical representation and the flight conditions and the parameters related to lockout, constitute another contribution of this work. A linearized model of the parafoil-payload system was developed and used to analyze the stability of the system about equilibrium conditions. The relationship between the control surface inputs and the stability was investigated. In addition to stability of flight, one more important objective of SLADS is to tow up the parafoil-payload system as fast as possible. The tension in the tow cable is directly proportional to the rate of ascent of the parafoil-payload system. Lockout instability is more favorable when tow tensions are large. Thus there is a tradeoff between susceptibility to lockout and rapid deployment. Control strategies were also developed for optimal tow up and to maintain stability in the event of disturbances.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Particulate matter (PM) emissions standards set by the US Environmental Protection Agency (EPA) have become increasingly stringent over the years. The EPA regulation for PM in heavy duty diesel engines has been reduced to 0.01 g/bhp-hr for the year 2010. Heavy duty diesel engines make use of an aftertreatment filtration device, the Diesel Particulate Filter (DPF). DPFs are highly efficient in filtering PM (known as soot) and are an integral part of 2010 heavy duty diesel aftertreatment system. PM is accumulated in the DPF as the exhaust gas flows through it. This PM needs to be removed by oxidation periodically for the efficient functioning of the filter. This oxidation process is also known as regeneration. There are 2 types of regeneration processes, namely active regeneration (oxidation of PM by external means) and passive oxidation (oxidation of PM by internal means). Active regeneration occurs typically in high temperature regions, about 500 - 600 °C, which is much higher than normal diesel exhaust temperatures. Thus, the exhaust temperature has to be raised with the help of external devices like a Diesel Oxidation Catalyst (DOC) or a fuel burner. The O2 oxidizes PM producing CO2 as oxidation product. In passive oxidation, one way of regeneration is by the use of NO2. NO2 oxidizes the PM producing NO and CO2 as oxidation products. The passive oxidation process occurs at lower temperatures (200 - 400 °C) in comparison to the active regeneration temperatures. Generally, DPF substrate walls are washcoated with catalyst material to speed up the rate of PM oxidation. The catalyst washcoat is observed to increase the rate of PM oxidation. The goal of this research is to develop a simple mathematical model to simulate the PM depletion during the active regeneration process in a DPF (catalyzed and non-catalyzed). A simple, zero-dimensional kinetic model was developed in MATLAB. Experimental data required for calibration was obtained by active regeneration experiments performed on PM loaded mini DPFs in an automated flow reactor. The DPFs were loaded with PM from the exhaust of a commercial heavy duty diesel engine. The model was calibrated to the data obtained from active regeneration experiments. Numerical gradient based optimization techniques were used to estimate the kinetic parameters of the model.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Mobile Mesh Network based In-Transit Visibility (MMN-ITV) system facilitates global real-time tracking capability for the logistics system. In-transit containers form a multi-hop mesh network to forward the tracking information to the nearby sinks, which further deliver the information to the remote control center via satellite. The fundamental challenge to the MMN-ITV system is the energy constraint of the battery-operated containers. Coupled with the unique mobility pattern, cross-MMN behavior, and the large-spanned area, it is necessary to investigate the energy-efficient communication of the MMN-ITV system thoroughly. First of all, this dissertation models the energy-efficient routing under the unique pattern of the cross-MMN behavior. A new modeling approach, pseudo-dynamic modeling approach, is proposed to measure the energy-efficiency of the routing methods in the presence of the cross-MMN behavior. With this approach, it could be identified that the shortest-path routing and the load-balanced routing is energy-efficient in mobile networks and static networks respectively. For the MMN-ITV system with both mobile and static MMNs, an energy-efficient routing method, energy-threshold routing, is proposed to achieve the best tradeoff between them. Secondly, due to the cross-MMN behavior, neighbor discovery is executed frequently to help the new containers join the MMN, hence, consumes similar amount of energy as that of the data communication. By exploiting the unique pattern of the cross-MMN behavior, this dissertation proposes energy-efficient neighbor discovery wakeup schedules to save up to 60% of the energy for neighbor discovery. Vehicular Ad Hoc Networks (VANETs)-based inter-vehicle communications is by now growingly believed to enhance traffic safety and transportation management with low cost. The end-to-end delay is critical for the time-sensitive safety applications in VANETs, and can be a decisive performance metric for VANETs. This dissertation presents a complete analytical model to evaluate the end-to-end delay against the transmission range and the packet arrival rate. This model illustrates a significant end-to-end delay increase from non-saturated networks to saturated networks. It hence suggests that the distributed power control and admission control protocols for VANETs should aim at improving the real-time capacity (the maximum packet generation rate without causing saturation), instead of the delay itself. Based on the above model, it could be determined that adopting uniform transmission range for every vehicle may hinder the delay performance improvement, since it does not allow the coexistence of the short path length and the low interference. Clusters are proposed to configure non-uniform transmission range for the vehicles. Analysis and simulation confirm that such configuration can enhance the real-time capacity. In addition, it provides an improved trade off between the end-to-end delay and the network capacity. A distributed clustering protocol with minimum message overhead is proposed, which achieves low convergence time.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Riparian zones are dynamic, transitional ecosystems between aquatic and terrestrial ecosystems with well defined vegetation and soil characteristics. Development of an all-encompassing definition for riparian ecotones, because of their high variability, is challenging. However, there are two primary factors that all riparian ecotones are dependent on: the watercourse and its associated floodplain. Previous approaches to riparian boundary delineation have utilized fixed width buffers, but this methodology has proven to be inadequate as it only takes the watercourse into consideration and ignores critical geomorphology, associated vegetation and soil characteristics. Our approach offers advantages over other previously used methods by utilizing: the geospatial modeling capabilities of ArcMap GIS; a better sampling technique along the water course that can distinguish the 50-year flood plain, which is the optimal hydrologic descriptor of riparian ecotones; the Soil Survey Database (SSURGO) and National Wetland Inventory (NWI) databases to distinguish contiguous areas beyond the 50-year plain; and land use/cover characteristics associated with the delineated riparian zones. The model utilizes spatial data readily available from Federal and State agencies and geospatial clearinghouses. An accuracy assessment was performed to assess the impact of varying the 50-year flood height, changing the DEM spatial resolution (1, 3, 5 and 10m), and positional inaccuracies with the National Hydrography Dataset (NHD) streams layer on the boundary placement of the delineated variable width riparian ecotones area. The result of this study is a robust and automated GIS based model attached to ESRI ArcMap software to delineate and classify variable-width riparian ecotones.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We present studies of the spatial clustering of inertial particles embedded in turbulent flow. A major part of the thesis is experimental, involving the technique of Phase Doppler Interferometry (PDI). The thesis also includes significant amount of simulation studies and some theoretical considerations. We describe the details of PDI and explain why it is suitable for study of particle clustering in turbulent flow with a strong mean velocity. We introduce the concept of the radial distribution function (RDF) as our chosen way of quantifying inertial particle clustering and present some original works on foundational and practical considerations related to it. These include methods of treating finite sampling size, interpretation of the magnitude of RDF and the possibility of isolating RDF signature of inertial clustering from that of large scale mixing. In experimental work, we used the PDI to observe clustering of water droplets in a turbulent wind tunnel. From that we present, in the form of a published paper, evidence of dynamical similarity (Stokes number similarity) of inertial particle clustering together with other results in qualitative agreement with available theoretical prediction and simulation results. We next show detailed quantitative comparisons of results from our experiments, direct-numerical-simulation (DNS) and theory. Very promising agreement was found for like-sized particles (mono-disperse). Theory is found to be incorrect regarding clustering of different-sized particles and we propose a empirical correction based on the DNS and experimental results. Besides this, we also discovered a few interesting characteristics of inertial clustering. Firstly, through observations, we found an intriguing possibility for modeling the RDF arising from inertial clustering that has only one (sensitive) parameter. We also found that clustering becomes saturated at high Reynolds number.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Proteins are linear chain molecules made out of amino acids. Only when they fold to their native states, they become functional. This dissertation aims to model the solvent (environment) effect and to develop & implement enhanced sampling methods that enable a reliable study of the protein folding problem in silico. We have developed an enhanced solvation model based on the solution to the Poisson-Boltzmann equation in order to describe the solvent effect. Following the quantum mechanical Polarizable Continuum Model (PCM), we decomposed net solvation free energy into three physical terms– Polarization, Dispersion and Cavitation. All the terms were implemented, analyzed and parametrized individually to obtain a high level of accuracy. In order to describe the thermodynamics of proteins, their conformational space needs to be sampled thoroughly. Simulations of proteins are hampered by slow relaxation due to their rugged free-energy landscape, with the barriers between minima being higher than the thermal energy at physiological temperatures. In order to overcome this problem a number of approaches have been proposed of which replica exchange method (REM) is the most popular. In this dissertation we describe a new variant of canonical replica exchange method in the context of molecular dynamic simulation. The advantage of this new method is the easily tunable high acceptance rate for the replica exchange. We call our method Microcanonical Replica Exchange Molecular Dynamic (MREMD). We have described the theoretical frame work, comment on its actual implementation, and its application to Trp-cage mini-protein in implicit solvent. We have been able to correctly predict the folding thermodynamics of this protein using our approach.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This document will demonstrate the methodology used to create an energy and conductance based model for power electronic converters. The work is intended to be a replacement for voltage and current based models which have limited applicability to the network nodal equations. Using conductance-based modeling allows direct application of load differential equations to the bus admittance matrix (Y-bus) with a unified approach. When applied directly to the Y-bus, the system becomes much easier to simulate since the state variables do not need to be transformed. The proposed transformation applies to loads, sources, and energy storage systems and is useful for DC microgrids. Transformed state models of a complete microgrid are compared to experimental results and show the models accurately reflect the system dynamic behavior.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Biogeochemical processes in the coastal region, including the coastal area of the Great Lakes, are of great importance due to the complex physical, chemical and biological characteristics that differ from those on either the adjoining land or open water systems. Particle-reactive radioisotopes, both naturally occurring (210Pb, 210Po and 7Be) and man-made (137Cs), have proven to be useful tracers for these processes in many systems. However, a systematic isotope study on the northwest coast of the Keweenaw Peninsula in Lake Superior has not yet been performed. In this dissertation research, field sampling, laboratory measurements and numerical modeling were conducted to understand the biogeochemistry of the radioisotope tracers and some particulate-related coastal processes. In the first part of the dissertation, radioisotope activities of 210Po and 210Pb in a variability of samples (dissolved, suspended particle, sediment trap materials, surficial sediment) were measured. A completed picture of the distribution and disequilibrium of this pair of isotopes was drawn. The application of a simple box model utilizing these field observations reveals short isotope residence times in the water column and a significant contribution of sediment resuspension (for both particles and isotopes). The results imply a highly dynamic coastal region. In the second part of this dissertation, this conclusion is examined further. Based on intensive sediment coring, the spatial distribution of isotope inventories (mainly 210Pb, 137Cs and 7Be) in the nearshore region was determined. Isotope-based focusing factors categorized most of the sampling sites as non- or temporary depositional zones. A twodimensional steady-state box-in-series model was developed and applied to individual transects with the 210Pb inventories as model input. The modeling framework included both water column and upper sediments down to the depth of unsupported 210Pb penetration. The model was used to predict isotope residence times and cross-margin fluxes of sediments and isotopes at different locations along each transect. The time scale for sediment focusing from the nearshore to offshore regions of the transect was on the order of 10 years. The possibility of sediment longshore movement was indicated by high inventory ratios of 137Cs: 210Pb. Local deposition of fine particles, including fresh organic carbon, may explain the observed distribution of benthic organisms such as Diporeia. In the last part of this dissertation, isotope tracers, 210Pb and 210Po, were coupled into a hydrodynamic model for Lake Superior. The model was modified from an existing 2-D finite difference physical-biological model which has previously been successfully applied on Lake Superior. Using the field results from part one of this dissertation as initial conditions, the model was used to predict the isotope distribution in the water column; reasonable results were achieved. The modeling experiments demonstrated the potential for using a hydrodynamic model to study radioisotope biogeochemistry in the lake, although further refinements are necessary.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Conventional vehicles are creating pollution problems, global warming and the extinction of high density fuels. To address these problems, automotive companies and universities are researching on hybrid electric vehicles where two different power devices are used to propel a vehicle. This research studies the development and testing of a dynamic model for Prius 2010 Hybrid Synergy Drive (HSD), a power-split device. The device was modeled and integrated with a hybrid vehicle model. To add an electric only mode for vehicle propulsion, the hybrid synergy drive was modified by adding a clutch to carrier 1. The performance of the integrated vehicle model was tested with UDDS drive cycle using rule-based control strategy. The dSPACE Hardware-In-the-Loop (HIL) simulator was used for HIL simulation test. The HIL simulation result shows that the integration of developed HSD dynamic model with a hybrid vehicle model was successful. The HSD model was able to split power and isolate engine speed from vehicle speed in hybrid mode.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Credible spatial information characterizing the structure and site quality of forests is critical to sustainable forest management and planning, especially given the increasing demands and threats to forest products and services. Forest managers and planners are required to evaluate forest conditions over a broad range of scales, contingent on operational or reporting requirements. Traditionally, forest inventory estimates are generated via a design-based approach that involves generalizing sample plot measurements to characterize an unknown population across a larger area of interest. However, field plot measurements are costly and as a consequence spatial coverage is limited. Remote sensing technologies have shown remarkable success in augmenting limited sample plot data to generate stand- and landscape-level spatial predictions of forest inventory attributes. Further enhancement of forest inventory approaches that couple field measurements with cutting edge remotely sensed and geospatial datasets are essential to sustainable forest management. We evaluated a novel Random Forest based k Nearest Neighbors (RF-kNN) imputation approach to couple remote sensing and geospatial data with field inventory collected by different sampling methods to generate forest inventory information across large spatial extents. The forest inventory data collected by the FIA program of US Forest Service was integrated with optical remote sensing and other geospatial datasets to produce biomass distribution maps for a part of the Lake States and species-specific site index maps for the entire Lake State. Targeting small-area application of the state-of-art remote sensing, LiDAR (light detection and ranging) data was integrated with the field data collected by an inexpensive method, called variable plot sampling, in the Ford Forest of Michigan Tech to derive standing volume map in a cost-effective way. The outputs of the RF-kNN imputation were compared with independent validation datasets and extant map products based on different sampling and modeling strategies. The RF-kNN modeling approach was found to be very effective, especially for large-area estimation, and produced results statistically equivalent to the field observations or the estimates derived from secondary data sources. The models are useful to resource managers for operational and strategic purposes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Early water resources modeling efforts were aimed mostly at representing hydrologic processes, but the need for interdisciplinary studies has led to increasing complexity and integration of environmental, social, and economic functions. The gradual shift from merely employing engineering-based simulation models to applying more holistic frameworks is an indicator of promising changes in the traditional paradigm for the application of water resources models, supporting more sustainable management decisions. This dissertation contributes to application of a quantitative-qualitative framework for sustainable water resources management using system dynamics simulation, as well as environmental systems analysis techniques to provide insights for water quality management in the Great Lakes basin. The traditional linear thinking paradigm lacks the mental and organizational framework for sustainable development trajectories, and may lead to quick-fix solutions that fail to address key drivers of water resources problems. To facilitate holistic analysis of water resources systems, systems thinking seeks to understand interactions among the subsystems. System dynamics provides a suitable framework for operationalizing systems thinking and its application to water resources problems by offering useful qualitative tools such as causal loop diagrams (CLD), stock-and-flow diagrams (SFD), and system archetypes. The approach provides a high-level quantitative-qualitative modeling framework for "big-picture" understanding of water resources systems, stakeholder participation, policy analysis, and strategic decision making. While quantitative modeling using extensive computer simulations and optimization is still very important and needed for policy screening, qualitative system dynamics models can improve understanding of general trends and the root causes of problems, and thus promote sustainable water resources decision making. Within the system dynamics framework, a growth and underinvestment (G&U) system archetype governing Lake Allegan's eutrophication problem was hypothesized to explain the system's problematic behavior and identify policy leverage points for mitigation. A system dynamics simulation model was developed to characterize the lake's recovery from its hypereutrophic state and assess a number of proposed total maximum daily load (TMDL) reduction policies, including phosphorus load reductions from point sources (PS) and non-point sources (NPS). It was shown that, for a TMDL plan to be effective, it should be considered a component of a continuous sustainability process, which considers the functionality of dynamic feedback relationships between socio-economic growth, land use change, and environmental conditions. Furthermore, a high-level simulation-optimization framework was developed to guide watershed scale BMP implementation in the Kalamazoo watershed. Agricultural BMPs should be given priority in the watershed in order to facilitate cost-efficient attainment of the Lake Allegan's TP concentration target. However, without adequate support policies, agricultural BMP implementation may adversely affect the agricultural producers. Results from a case study of the Maumee River basin show that coordinated BMP implementation across upstream and downstream watersheds can significantly improve cost efficiency of TP load abatement.