3 resultados para Solar Radiation
em Digital Commons - Michigan Tech
Resumo:
The prevalence of Ventilated Improved Pit (VIP) latrines in Ghana suggests that the design must have a high user acceptance. The two key factors attributed to user acceptance of a VIP latrine over an alternative latrine design, such as the basic pit latrine, are its ability to remove foul odors and maintain low fly populations; both of which are a direct result of an adequate ventilation flow rate. Adequate ventilation for odorless conditions in a VIP latrine has been defined by the United Nations Development Program (UNDP) and the World Bank, as an air flow rate equivalent to 6 air changes per hour (6 ACH) of the superstructure’s air volume. Additionally, the UNDP determined that the three primary factors that affect ventilation are: 1) wind passing over the mouth of the vent pipe, 2) wind passing into the superstructure, and 3) solar radiation on to the vent pipe. Previous studies also indicate that vent pipes with larger diameters increase flow rates, and the application of carbonaceous materials to the pit sludge reduces odor and insect prevalence. Furthermore, proper design and construction is critical for the correct functioning of VIP latrines. Under-designing could cause problems with odor and insect control; over-designing would increase costs unnecessarily, thereby making it potentially unaffordable for benefactors to independently construct, repair or replace a VIP latrine. The present study evaluated the design of VIP latrines used by rural communities in the Upper West Region of Ghana with the focus of assessing adequate ventilation for odor removal and insect control. Thirty VIP latrines from six communities in the Upper West Region of Ghana were sampled. Each VIP latrine’s ventilation flow rate and micro-environment was measured using a hot-wire anemometer probe and portable weather station for a minimum of four hours. To capture any temporal or seasonal variations in ventilation, ten of the latrines were sampled monthly over the course of three months for a minimum of 12 hours. A latrine usage survey and a cost analysis were also conducted to further assess the VIP latrine as an appropriated technology for sustainable development in the Upper West Region. It was found that the average air flow rate over the entire sample set was 11.3 m3/hr. The minimum and maximum air flow rates were 0.0 m3/hr and 48.0 m3/hr respectively. Only 1 of the 30 VIP latrines (3%) was found to have an air flow rate greater than the UNDP-defined odorless condition of 6 ACH. Furthermore, 19 VIP latrines (63%) were found to have an average air flow rate of less than half the flow rate required to achieve 6 ACH. The dominant factors affecting ventilation flow rate were wind passing over the mouth of the vent pipe and air buoyancy forces, which were the effect of differences in temperature between the substructure and the ambient environment. Of 76 usable VIP latrines found in one community, 68.4% were in actual use. The cost of a VIP latrine was found to be equivalent to approximately 12% of the mean annual household income for Upper West Region inhabitants.
Resumo:
In-service hardened concrete pavement suffers from environmental loadings caused by curling and warping of the slab. Traditionally, these loadings are computed on the basis of treating the slab as an elastic material, and of evaluating separately the curling and warping components. This dissertation simulates temperature distribution and moisture distribution through the slabs by use of a developed numerical model that couples the heat transfer and moisture transport. The computation of environmental loadings treats the slab as an elastic-viscous material, which considers the relaxation behavior and Pickett effect of the concrete. The heat transfer model considers the impacts of solar radiation, wind speed, air temperature, pavement slab albedo, etc. on the pavement temperature distribution. This dissertation assesses the difference between documented models that aim to predict pavement temperature, highlighting their pros and cons. The moisture transport model is unique for the documented models; it mimics the wetting and drying events occurring at the slab surface. These events are estimated by a proposed statistical algorithm, which is verified by field rainfall data. Analysis of the predicted results examines on the roles of the local air RH (relative humidity), wind speed, rainy pattern in the moisture distribution through the slab. The findings reveal that seasonal air RH plays a decisive role on the slab‘s moisture distribution; but wind speed and its daily variation, daily RH variation, and seasonal rainfall pattern plays only a secondary role. This dissertation sheds light on the computation of environmental loadings that in-service pavement slabs suffer from. Analysis of the computed stresses centers on the stress relaxation near the surface, stress evolution after the curing ends, and the impact of construction season on the stress‘s magnitude. An unexpected finding is that the total environmental loadings at the cyclically-stable state divert from the thermal stresses. At such a state, the total stress at the daytime is roughly equal to the thermal stress; whereas the total stress during the nighttime is far greater than the thermal stress. An explanation for this phenomenon is that during the night hours, the decline of the slab‘s near-surface temperature leads to a drop of the near-surface RH. This RH drop results in contraction therein and develops additional tensile stresses. The dissertation thus argues that estimating the environmental loadings by solely computing the thermally-induced stresses may reach delusive results. It recommends that the total environmental loadings of in-service slabs should be estimated by a sophisticated model coupling both moisture component and temperature component.
Resumo:
ZnO has proven to be a multifunctional material with important nanotechnological applications. ZnO nanostructures can be grown in various forms such as nanowires, nanorods, nanobelts, nanocombs etc. In this work, ZnO nanostructures are grown in a double quartz tube configuration thermal Chemical Vapor Deposition (CVD) system. We focus on functionalized ZnO Nanostructures by controlling their structures and tuning their properties for various applications. The following topics have been investigated: 1. We have fabricated various ZnO nanostructures using a thermal CVD technique. The growth parameters were optimized and studied for different nanostructures. 2. We have studied the application of ZnO nanowires (ZnONWs) for field effect transistors (FETs). Unintentional n-type conductivity was observed in our FETs based on as-grown ZnO NWs. We have then shown for the first time that controlled incorporation of hydrogen into ZnO NWs can introduce p-type characters to the nanowires. We further found that the n-type behaviors remained, leading to the ambipolar behaviors of hydrogen incorporated ZnO NWs. Importantly, the detected p- and n- type behaviors are stable for longer than two years when devices were kept in ambient conditions. All these can be explained by an ab initio model of Zn vacancy-Hydrogen complexes, which can serve as the donor, acceptors, or green photoluminescence quencher, depend on the number of hydrogen atoms involved. 3. Next ZnONWs were tested for electron field emission. We focus on reducing the threshold field (Eth) of field emission from non-aligned ZnO NWs. As encouraged by our results on enhancing the conductivity of ZnO NWs by hydrogen annealing described in Chapter 3, we have studied the effect of hydrogen annealing for improving field emission behavior of our ZnO NWs. We found that optimally annealed ZnO NWs offered much lower threshold electric field and improved emission stability. We also studied field emission from ZnO NWs at moderate vacuum levels. We found that there exists a minimum Eth as we scale the threshold field with pressure. This behavior is explained by referring to Paschen’s law. 4. We have studied the application of ZnO nanostructures for solar energy harvesting. First, as-grown and (CdSe) ZnS QDs decorated ZnO NBs and ZnONWs were tested for photocurrent generation. All these nanostructures offered fast response time to solar radiation. The decoration of QDs decreases the stable current level produced by ZnONWs but increases that generated by NBs. It is possible that NBs offer more stable surfaces for the attachment of QDs. In addition, our results suggests that performance degradation of solar cells made by growing ZnO NWs on ITO is due to the increase in resistance of ITO after the high temperature growth process. Hydrogen annealing also improve the efficiency of the solar cells by decreasing the resistance of ITO. Due to the issues on ITO, we use Ni foil as the growth substrates. Performance of solar cells made by growing ZnO NWs on Ni foils degraded after Hydrogen annealing at both low (300 °C) and high (600 °C) temperatures since annealing passivates native defects in ZnONWs and thus reduce the absorption of visible spectra from our solar simulator. Decoration of QDs improves the efficiency of such solar cells by increasing absorption of light in the visible region. Using a better electrolyte than phosphate buffer solution (PBS) such as KI also improves the solar cell efficiency. 5. Finally, we have attempted p-type doping of ZnO NWs using various growth precursors including phosphorus pentoxide, sodium fluoride, and zinc fluoride. We have also attempted to create p-type carriers via introducing interstitial fluorine by annealing ZnO nanostructures in diluted fluorine gas. In brief, we are unable to reproduce the growth of reported p-type ZnO nanostructures. However; we have identified the window of temperature and duration of post-growth annealing of ZnO NWs in dilute fluorine gas which leads to suppression of native defects. This is the first experimental effort on post-growth annealing of ZnO NWs in dilute fluorine gas although this has been suggested by a recent theory for creating p-type semiconductors. In our experiments the defect band peak due to native defects is found to decrease by annealing at 300 °C for 10 – 30 minutes. One of the major future works will be to determine the type of charge carriers in our annealed ZnONWs.