2 resultados para Soil temperature
em Digital Commons - Michigan Tech
Resumo:
Housing development has increased dramatically in the Midwest with a high concentration around lakes. This development plays an important role in the economy of Northwoods communities. However, poorly planned development has the potential to alter a lake’s ecological processes and integrity. Studies have documented the impacts of housing developments and reported dramatic, negative changes to the flora and fauna in Vilas County, Wisconsin. One component of my research included examining the previously unstudied effects of residential development on the abundance and diversity of medium to large-bodied mammals using lakeshore ecosystems. The results suggest that a higher diversity of mammals were detected on low-development lakes. Coyotes were the most numerous species detected with the majority encountered on low-development lakes. White-tailed deer and red fox were more abundant on high-development lakes as compared to low-development lakes. I concluded that high-development lakes are having a negative affect on the mammal community in this area. Recently, lakeshore restoration has occurred on privately owned property in Vilas County and elsewhere in the Northwoods, but little is known about the benefit, if any, from these restoration efforts. A partnership between government agencies and academia has launched a long-term research project investigating the ecological benefits of lakeshore restoration. I investigated the impacts of using down woody material (DWM) to increase the success of restoration projects. Specifically, I tested the hypothesis that down woody material would reduce the variation in soil temperature, retain soil moisture, and improve plant survival and growth rates. I randomly assigned three DWM coverage treatments (0%, 25%, and 50%) on 3 m × 3 m experimental plots (n = 10 per treatment). The mean maximum soil temperature, temperature variation, and change in soil moisture content were significantly lower in the 25% and 50% DWM plots. I found no difference in survival, but snowberry (Symphoricarpos albus) and Barren strawberry (Waldstenia fragaroides) growth was significant greater in the 25% and 50% DWM plots. DWM addition can be considered a useful technique to physically manipulate soil properties and improve plant growth. Finally, I provided baseline data on vegetation structure, bird and small mammal community diversity and abundance for three lakes targeted for restoration efforts and their paired reference lakes. This study is one of the first of it kind in the area and continuing to document the degree of change in subsequent years will provide insight into the way the local ecosystem functions and how ecological communities are structured.
Resumo:
As global climate continues to change, it becomes more important to understand possible feedbacks from soils to the climate system. This dissertation focuses on soil microbial community responses to climate change factors in northern hardwood forests. Two soil warming experiments at Harvard Forest in Massachusetts, and a climate change manipulation experiment with both elevated temperature and increased moisture inputs in Michigan were sampled. The hyphal in-growth bag method was to understand how soil fungal biomass and respiration respond to climate change factors. Our results from phospholipid fatty acid (PLFA) analyses suggest that the hyphal in-growth bag method allows relatively pure samples of fungal hyphae to be partitioned from bacteria in the soil. The contribution of fungal hyphal respiration to soil respiration was examined in climate change manipulation experiments in Massachusetts and Michigan. The Harvard Forest soil warming experiments in Massachusetts are long-term studies with 8 and 18 years of +5 °C warming treatment. Hyphal respiration and biomass production tended to decrease with soil warming at Harvard Forest. This suggests that fungal hyphae adjust to higher temperatures by decreasing the amount of carbon respired and the amount of carbon stored in biomass. The Ford Forestry Center experiment in Michigan has a 2 x 2 fully factorial design with warming (+4-5 °C) and moisture addition (+30% average ambient growing season precipitation). This experiment was used to examine hyphal growth and respiration of arbuscular mycorrhizal fungi (AMF), soil enzymatic capacity, microbial biomass and microbial community structure in the soil over two years of experimental treatment. Results from the hyphal in-growth bag study indicate that AMF hyphal growth and respiration respond negatively to drought. Soil enzyme activities tend to be higher in heated versus unheated soils. There were significant temporal variations in enzyme activity and microbial biomass estimates. When microbial biomass was estimated using chloroform fumigation extractions there were no differences between experimental treatments and the control. When PLFA analyses were used to estimate microbial biomass we found that biomass responds negatively to higher temperatures and positively to moisture addition. This pattern was present for both bacteria and fungi. More information on the quality and composition of the organic matter and nutrients in soils from climate change manipulation experiments will allow us to gain a more thorough understanding of the mechanisms driving the patterns reported here. The information presented here will improve current soil carbon and nitrogen cycling models.