3 resultados para Soil erosion.

em Digital Commons - Michigan Tech


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Soil erosion is a natural geological phenomenon resulting from removal and transportation of soil particles by water, wind, ice and gravity. As soil erosion may be affected from cultural factors as well. The physical and social phenomena of soil erosion are researched in six communities in the upper part of Rio Grijalva Basin in the vicinity of Motozintla de Mendoza, Chiapas, Mexico. For this study, the USDA RUSLE model was applied to estimate soil erosion rates in the six communities based on the available data. The RUSLE model is based on soil properties, topography, and land cover and management factors. These results showed that estimated soil erosion rates ranged from a high of 2,050 metric ton ha-1 yr-1 to a low of 100 metric ton ha-1 yr-1. A survey concerning knowledge, attitudes and practices (KAP) related to soil erosion was also conducted in all 236 households in the six communities. The main findings of the KAP survey were: 69% of respondents did not know what soil erosion was, while over 40% of the population perceived that hurricanes are the biggest factors that cause soil erosion, and about 20 % of the interviewees said that the landslides are the consequences of the soil erosion. People in communities did not perceive cultural factors as important in conservation efforts for reduce vulnerability to erosion; therefore, the results obtained are suggested to be useful for informing efforts to educate stakeholders.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The amount and type of ground cover is an important characteristic to measure when collecting soil disturbance monitoring data after a timber harvest. Estimates of ground cover and bare soil can be used for tracking changes in invasive species, plant growth and regeneration, woody debris loadings, and the risk of surface water runoff and soil erosion. A new method of assessing ground cover and soil disturbance was recently published by the U.S. Forest Service, the Forest Soil Disturbance Monitoring Protocol (FSDMP). This protocol uses the frequency of cover types in small circular (15cm) plots to compare ground surface in pre- and post-harvest condition. While both frequency and percent cover are common methods of describing vegetation, frequency has rarely been used to measure ground surface cover. In this study, three methods for assessing ground cover percent (step-point, 15cm dia. circular and 1x5m visual plot estimates) were compared to the FSDMP frequency method. Results show that the FSDMP method provides significantly higher estimates of ground surface condition for most soil cover types, except coarse wood. The three cover methods had similar estimates for most cover values. The FSDMP method also produced the highest value when bare soil estimates were used to model erosion risk. In a person-hour analysis, estimating ground cover percent in 15cm dia. plots required the least sampling time, and provided standard errors similar to the other cover estimates even at low sampling intensities (n=18). If ground cover estimates are desired in soil monitoring, then a small plot size (15cm dia. circle), or a step-point method can provide a more accurate estimate in less time than the current FSDMP method.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A post classification change detection technique based on a hybrid classification approach (unsupervised and supervised) was applied to Landsat Thematic Mapper (TM), Landsat Enhanced Thematic Plus (ETM+), and ASTER images acquired in 1987, 2000 and 2004 respectively to map land use/cover changes in the Pic Macaya National Park in the southern region of Haiti. Each image was classified individually into six land use/cover classes: built-up, agriculture, herbaceous, open pine forest, mixed forest, and barren land using unsupervised ISODATA and maximum likelihood supervised classifiers with the aid of field collected ground truth data collected in the field. Ground truth information, collected in the field in December 2007, and including equalized stratified random points which were visual interpreted were used to assess the accuracy of the classification results. The overall accuracy of the land classification for each image was respectively: 1987 (82%), 2000 (82%), 2004 (87%). A post classification change detection technique was used to produce change images for 1987 to 2000, 1987 to 2004, and 2000 to 2004. It was found that significant changes in the land use/cover occurred over the 17- year period. The results showed increases in built up (from 10% to 17%) and herbaceous (from 5% to 14%) areas between 1987 and 2004. The increase of herbaceous was mostly caused by the abandonment of exhausted agriculture lands. At the same time, open pine forest and mixed forest areas lost (75%) and (83%) of their area to other land use/cover types. Open pine forest (from 20% to 14%) and mixed forest (from18 to 12%) were transformed into agriculture area or barren land. This study illustrated the continuing deforestation, land degradation and soil erosion in the region, which in turn is leading to decrease in vegetative cover. The study also showed the importance of Remote Sensing (RS) and Geographic Information System (GIS) technologies to estimate timely changes in the land use/cover, and to evaluate their causes in order to design an ecological based management plan for the park.