5 resultados para Software engineering estimation model
em Digital Commons - Michigan Tech
Resumo:
Estimating un-measurable states is an important component for onboard diagnostics (OBD) and control strategy development in diesel exhaust aftertreatment systems. This research focuses on the development of an Extended Kalman Filter (EKF) based state estimator for two of the main components in a diesel engine aftertreatment system: the Diesel Oxidation Catalyst (DOC) and the Selective Catalytic Reduction (SCR) catalyst. One of the key areas of interest is the performance of these estimators when the catalyzed particulate filter (CPF) is being actively regenerated. In this study, model reduction techniques were developed and used to develop reduced order models from the 1D models used to simulate the DOC and SCR. As a result of order reduction, the number of states in the estimator is reduced from 12 to 1 per element for the DOC and 12 to 2 per element for the SCR. The reduced order models were simulated on the experimental data and compared to the high fidelity model and the experimental data. The results show that the effect of eliminating the heat transfer and mass transfer coefficients are not significant on the performance of the reduced order models. This is shown by an insignificant change in the kinetic parameters between the reduced order and 1D model for simulating the experimental data. An EKF based estimator to estimate the internal states of the DOC and SCR was developed. The DOC and SCR estimators were simulated on the experimental data to show that the estimator provides improved estimation of states compared to a reduced order model. The results showed that using the temperature measurement at the DOC outlet improved the estimates of the CO , NO , NO2 and HC concentrations from the DOC. The SCR estimator was used to evaluate the effect of NH3 and NOX sensors on state estimation quality. Three sensor combinations of NOX sensor only, NH3 sensor only and both NOX and NH3 sensors were evaluated. The NOX only configuration had the worst performance, the NH3 sensor only configuration was in the middle and both the NOX and NH3 sensor combination provided the best performance.
Resumo:
The flammability zone boundaries are very important properties to prevent explosions in the process industries. Within the boundaries, a flame or explosion can occur so it is important to understand these boundaries to prevent fires and explosions. Very little work has been reported in the literature to model the flammability zone boundaries. Two boundaries are defined and studied: the upper flammability zone boundary and the lower flammability zone boundary. Three methods are presented to predict the upper and lower flammability zone boundaries: The linear model The extended linear model, and An empirical model The linear model is a thermodynamic model that uses the upper flammability limit (UFL) and lower flammability limit (LFL) to calculate two adiabatic flame temperatures. When the proper assumptions are applied, the linear model can be reduced to the well-known equation yLOC = zyLFL for estimation of the limiting oxygen concentration. The extended linear model attempts to account for the changes in the reactions along the UFL boundary. Finally, the empirical method fits the boundaries with linear equations between the UFL or LFL and the intercept with the oxygen axis. xx Comparison of the models to experimental data of the flammability zone shows that the best model for estimating the flammability zone boundaries is the empirical method. It is shown that is fits the limiting oxygen concentration (LOC), upper oxygen limit (UOL), and the lower oxygen limit (LOL) quite well. The regression coefficient values for the fits to the LOC, UOL, and LOL are 0.672, 0.968, and 0.959, respectively. This is better than the fit of the "zyLFL" method for the LOC in which the regression coefficient’s value is 0.416.
Resumo:
The degree of polarization of a refected field from active laser illumination can be used for object identifcation and classifcation. The goal of this study is to investigate methods for estimating the degree of polarization for refected fields with active laser illumination, which involves the measurement and processing of two orthogonal field components (complex amplitudes), two orthogonal intensity components, and the total field intensity. We propose to replace interferometric optical apparatuses with a computational approach for estimating the degree of polarization from two orthogonal intensity data and total intensity data. Cramer-Rao bounds for each of the three sensing modalities with various noise models are computed. Algebraic estimators and maximum-likelihood (ML) estimators are proposed. Active-set algorithm and expectation-maximization (EM) algorithm are used to compute ML estimates. The performances of the estimators are compared with each other and with their corresponding Cramer-Rao bounds. Estimators for four-channel polarimeter (intensity interferometer) sensing have a better performance than orthogonal intensities estimators and total intensity estimators. Processing the four intensities data from polarimeter, however, requires complicated optical devices, alignment, and four CCD detectors. It only requires one or two detectors and a computer to process orthogonal intensities data and total intensity data, and the bounds and estimator performances demonstrate that reasonable estimates may still be obtained from orthogonal intensities or total intensity data. Computational sensing is a promising way to estimate the degree of polarization.
MINING AND VERIFICATION OF TEMPORAL EVENTS WITH APPLICATIONS IN COMPUTER MICRO-ARCHITECTURE RESEARCH
Resumo:
Computer simulation programs are essential tools for scientists and engineers to understand a particular system of interest. As expected, the complexity of the software increases with the depth of the model used. In addition to the exigent demands of software engineering, verification of simulation programs is especially challenging because the models represented are complex and ridden with unknowns that will be discovered by developers in an iterative process. To manage such complexity, advanced verification techniques for continually matching the intended model to the implemented model are necessary. Therefore, the main goal of this research work is to design a useful verification and validation framework that is able to identify model representation errors and is applicable to generic simulators. The framework that was developed and implemented consists of two parts. The first part is First-Order Logic Constraint Specification Language (FOLCSL) that enables users to specify the invariants of a model under consideration. From the first-order logic specification, the FOLCSL translator automatically synthesizes a verification program that reads the event trace generated by a simulator and signals whether all invariants are respected. The second part consists of mining the temporal flow of events using a newly developed representation called State Flow Temporal Analysis Graph (SFTAG). While the first part seeks an assurance of implementation correctness by checking that the model invariants hold, the second part derives an extended model of the implementation and hence enables a deeper understanding of what was implemented. The main application studied in this work is the validation of the timing behavior of micro-architecture simulators. The study includes SFTAGs generated for a wide set of benchmark programs and their analysis using several artificial intelligence algorithms. This work improves the computer architecture research and verification processes as shown by the case studies and experiments that have been conducted.
Resumo:
Time-averaged discharge rates (TADR) were calculated for five lava flows at Pacaya Volcano (Guatemala), using an adapted version of a previously developed satellite-based model. Imagery acquired during periods of effusive activity between the years 2000 and 2010 were obtained from two sensors of differing temporal and spatial resolutions; the Moderate Resolution Imaging Spectroradiometer (MODIS), and the Geostationary Operational Environmental Satellites (GOES) Imager. A total of 2873 MODIS and 2642 GOES images were searched manually for volcanic “hot spots”. It was found that MODIS imagery, with superior spatial resolution, produced better results than GOES imagery, so only MODIS data were used for quantitative analyses. Spectral radiances were transformed into TADR via two methods; first, by best-fitting some of the parameters (i.e. density, vesicularity, crystal content, temperature change) of the TADR estimation model to match flow volumes previously estimated from ground surveys and aerial photographs, and second by measuring those parameters from lava samples to make independent estimates. A relatively stable relationship was defined using the second method, which suggests the possibility of estimating lava discharge rates in near-real-time during future volcanic crises at Pacaya.