4 resultados para Soft chemical method
em Digital Commons - Michigan Tech
Resumo:
Multi-input multi-output (MIMO) technology is an emerging solution for high data rate wireless communications. We develop soft-decision based equalization techniques for frequency selective MIMO channels in the quest for low-complexity equalizers with BER performance competitive to that of ML sequence detection. We first propose soft decision equalization (SDE), and demonstrate that decision feedback equalization (DFE) based on soft-decisions, expressed via the posterior probabilities associated with feedback symbols, is able to outperform hard-decision DFE, with a low computational cost that is polynomial in the number of symbols to be recovered, and linear in the signal constellation size. Building upon the probabilistic data association (PDA) multiuser detector, we present two new MIMO equalization solutions to handle the distinctive channel memory. With their low complexity, simple implementations, and impressive near-optimum performance offered by iterative soft-decision processing, the proposed SDE methods are attractive candidates to deliver efficient reception solutions to practical high-capacity MIMO systems. Motivated by the need for low-complexity receiver processing, we further present an alternative low-complexity soft-decision equalization approach for frequency selective MIMO communication systems. With the help of iterative processing, two detection and estimation schemes based on second-order statistics are harmoniously put together to yield a two-part receiver structure: local multiuser detection (MUD) using soft-decision Probabilistic Data Association (PDA) detection, and dynamic noise-interference tracking using Kalman filtering. The proposed Kalman-PDA detector performs local MUD within a sub-block of the received data instead of over the entire data set, to reduce the computational load. At the same time, all the inter-ference affecting the local sub-block, including both multiple access and inter-symbol interference, is properly modeled as the state vector of a linear system, and dynamically tracked by Kalman filtering. Two types of Kalman filters are designed, both of which are able to track an finite impulse response (FIR) MIMO channel of any memory length. The overall algorithms enjoy low complexity that is only polynomial in the number of information-bearing bits to be detected, regardless of the data block size. Furthermore, we introduce two optional performance-enhancing techniques: cross- layer automatic repeat request (ARQ) for uncoded systems and code-aided method for coded systems. We take Kalman-PDA as an example, and show via simulations that both techniques can render error performance that is better than Kalman-PDA alone and competitive to sphere decoding. At last, we consider the case that channel state information (CSI) is not perfectly known to the receiver, and present an iterative channel estimation algorithm. Simulations show that the performance of SDE with channel estimation approaches that of SDE with perfect CSI.
Resumo:
The copper mining boom in Michigan's Upper Peninsula ended in the mid-1960s, but the historical mining still affects the region to this day. Earlier studies conducted in the Keweenaw have shown that trace metals in the sediments negatively affect benthic macroinvertebrate populations. However, because the concentrations of trace metals that are observed to be toxic often differ significantly between the laboratory and the environment, a better method for determining toxic levels of trace metals in the natural environment is desirable in order to establish surface water quality guidelines that effectively protect aquatic life. There were four research objectives for this research project. First, to determine if trace-level concentrations of copper can result in detectable ecological impacts even in the presence of high dissolved organic carbon (DOC). Second, to determine if there is a "safe" concentration of total dissolved copper below which there is little to no ecological impairment. Third, to establish which streams in the Keweenaw Peninsula have been most impacted by elevated levels of total dissolved copper. Fourth, to use this information to evaluate revisions to the water quality criterion for copper that were recently proposed by the Michigan Department of Environmental Quality (MDEQ). In order to collect water quality and macroinvertebrate data, two sampling surveys of approximately 50 streams were completed in the spring and summer of 2012. Our findings demonstrate that negative ecological impacts can be detected even in the presence of high concentrations of DOC. The majority of surveyed streams showed evidence of total dissolved copper concentrations that were elevated above background levels. Our findings suggest that there are detectable negative impacts below the current water quality standard for copper in many Keweenaw streams. The diversity of benthic macroinvertebrates and the number of species present has been reduced as a result of exposure to copper. Additionally, the multimetric approach used by MDEQ is unable to detect copper impairment in local streams due to the use of several insensitive metrics. The proposed changes to the copper criterion would increase the amount of total dissolved copper allowable despite the fact that approximately 25% of streams sampled have aquatic chemistries that would leave them vulnerable to high levels of copper ions.
Resumo:
Viral infections account for over 13 million deaths per year. Antiviral drugs and vaccines are the most effective method to treat viral diseases. Antiviral compounds have revolutionized the treatment of AIDS, and reduced the mortality rate. However, this disease still causes a large number of deaths in developing countries that lack these types of drugs. Vaccination is the most effective method to treat viral disease; vaccines prevent around 2.5 million deaths per year. Vaccines are not able to offer full coverage due to high operational costs in the manufacturing processes. Although vaccines have saved millions of lives, conventional vaccines often offer reactogenic effects. New technologies have been created to eliminate the undesired side effects. However, new vaccines are less immunogenic and adjuvants such as vaccine delivery vehicles are required. This work focuses on the discovery of new natural antivirals that can reduce the high cost and side effects of synthetic drugs. We discovered that two osmolytes, trimethylamine N-oxide (TMAO) and glycine reduce the infectivity of a model virus, porcine parvovirus (PPV), by 4 LRV (99.99%), likely by disruption of capsid assembly. These osmolytes have the potential to be used as drugs, since they showed antiviral activity after 20 h. We have also focused on improving current vaccine manufacturing processes that will allow fast, effective and economical vaccines to be produced worldwide. We propose virus flocculation in osmolytes followed by microfiltration as an economical alternative for vaccine manufacturing. Osmolytes are able to specifically flocculate hydrophobic virus particles by depleting a hydration layer around the particles and subsequently cause virus aggregation. The osmolyte mannitol was able to flocculate virus particles, and demonstrate a high virus removal, 81% for PPV and 98.1% for Sindbis virus (SVHR). Virus flocculation with mannitol, followed by microfiltration could be used as a platform process for virus purification. Finally, we perform biocompatibility studies on soft-templated mesoporous carbon materials with the aim of using these materials as vaccine delivery vehicles. We discovered that these materials are biocompatible, and the degree of biocompatibility is within the range of other biomaterials currently employed in biomedical applications.
Resumo:
Roads and highways present a unique challenge to wildlife as they exhibit substantial impacts on the surrounding ecosystem through the interruption of a number of ecological processes. With new roads added to the national highway system every year, an understanding of these impacts is required for effective mitigation of potential environmental impacts. A major contributor to these negative effects is the deposition of chemicals used in winter deicing activities to nearby surface waters. These chemicals often vary in composition and may affect freshwater species differently. The negative impacts of widespread deposition of sodium chloride (NaCl) have prompted a search for an `environmentally friendly' alternative. However, little research has investigated the potential environmental effects of widespread use of these alternatives. Herein, I detail the results of laboratory tests and field surveys designed to determine the impacts of road salt (NaCl) and other chemical deicers on amphibian communities in Michigan's Upper Peninsula. Using larval amphibians I demonstrate the lethal impacts of a suite of chemical deicers on this sensitive, freshwater species. Larval wood frogs (Lithobates sylvatica) were tolerant of short-term (96 hours) exposure to urea (CH4N2O), sodium chloride (NaCl), and magnesium chloride (MgCl2). However, these larvae were very sensitive to acetate products (C8H12CaMgO8, CH3COOK) and calcium chloride (CaCl2). These differences in tolerance suggest that certain deicers may be more harmful to amphibians than others. Secondly, I expanded this analysis to include an experiment designed to determine the sublethal effects of chronic exposure to environmentally realistic concentrations of NaCl on two unique amphibian species, L. sylvatica and green frogs (L. clamitans). L. sylvatica tend to breed in small, ephemeral wetlands and metamorphose within a single season. However, L. clamitans breed primarily in more permanent wetlands and often remain as tadpoles for one year or more. These species employ different life history strategies in this region which may influence their response to chronic NaCl exposure. Both species demonstrated potentially harmful effects on individual fitness. L. sylvatica larvae had a high incidence of edema suggesting the NaCl exposure was a significant physiologic stressor to these larvae. L. clamitans larvae reduced tail length during their exposure which may affect adult fitness of these individuals. In order to determine the risk local amphibians face when using these roadside pools, I conducted a survey of the spatial distribution of chloride in the three northernmost counties of Michigan. This area receives a relatively low amount of NaCl which is confined to state and federal highways. The chloride concentrations in this region were much lower than those in urban systems; however, amphibians breeding in the local area may encounter harmful chloride levels arising from temporal variations in hydroperiods. Spatial variation of chloride levels suggests the road-effect zone for amphibians may be as large as 1000 m from a salt-treated highway. Lastly, I performed an analysis of the use of specific conductance to predict chloride concentrations in natural surface water bodies. A number of studies have used this regression to predict chloride concentrations from measurements of specific conductance. This method is often chosen in the place of ion chromatography due to budget and time constraints. However, using a regression method to characterize this relationship does not result in accurate chloride ion concentration estimates.