3 resultados para Socialism in the U.S.
em Digital Commons - Michigan Tech
Resumo:
This thesis focuses on the impact of the American shale gas boom on the European natural gas market. The study presents different tests in order to analyze the dynamics of natural gas prices in the U.S., U.K. and German natural gas market. The question of cointegration between these different markets are analyzed using several tests. More specifically, the ADF tests for the presence of a unit root. The error correction model test and the Johansen cointegration procedure are applied in order to accept or reject the hypothesis of an integrated market. The results suggest no evidence of cointegration between these markets. There currently is no evidence of an impact of the U.S. shale gas boom on the European market.
Resumo:
The literature on Finnish immigrant working-class movements in North America frequently makes reference to the phenomenon of "hall socialism," so-called because of the central position that the socialist or labor hall occupied in the political, associational, and cultural life of many Finnish communities throughout the twentieth-century. In the 1930s, over 80 such Finnish halls were spread across Canada, and many people associated with these halls vigorously supported the mission of organized labor. This paper will examine the history, ideas, and practices of the Industrial Workers of the World-influenced Canadan Teollisuusunionistien Kannatus Liitto (CTKL; Canadian Industrial Unionist Support League), and its connections to Finnish Canadian hall socialism. The paper will consider the role of the CTKL in supporting workers' struggles, the significance of the hall as a part of the infrastructural bedrock that sustained this support, and the broader interaction between social and radical organizing commitments.
Resumo:
Credible spatial information characterizing the structure and site quality of forests is critical to sustainable forest management and planning, especially given the increasing demands and threats to forest products and services. Forest managers and planners are required to evaluate forest conditions over a broad range of scales, contingent on operational or reporting requirements. Traditionally, forest inventory estimates are generated via a design-based approach that involves generalizing sample plot measurements to characterize an unknown population across a larger area of interest. However, field plot measurements are costly and as a consequence spatial coverage is limited. Remote sensing technologies have shown remarkable success in augmenting limited sample plot data to generate stand- and landscape-level spatial predictions of forest inventory attributes. Further enhancement of forest inventory approaches that couple field measurements with cutting edge remotely sensed and geospatial datasets are essential to sustainable forest management. We evaluated a novel Random Forest based k Nearest Neighbors (RF-kNN) imputation approach to couple remote sensing and geospatial data with field inventory collected by different sampling methods to generate forest inventory information across large spatial extents. The forest inventory data collected by the FIA program of US Forest Service was integrated with optical remote sensing and other geospatial datasets to produce biomass distribution maps for a part of the Lake States and species-specific site index maps for the entire Lake State. Targeting small-area application of the state-of-art remote sensing, LiDAR (light detection and ranging) data was integrated with the field data collected by an inexpensive method, called variable plot sampling, in the Ford Forest of Michigan Tech to derive standing volume map in a cost-effective way. The outputs of the RF-kNN imputation were compared with independent validation datasets and extant map products based on different sampling and modeling strategies. The RF-kNN modeling approach was found to be very effective, especially for large-area estimation, and produced results statistically equivalent to the field observations or the estimates derived from secondary data sources. The models are useful to resource managers for operational and strategic purposes.