5 resultados para Small Hydroelectric Power Plant
em Digital Commons - Michigan Tech
Resumo:
This dissertation presents the competitive control methodologies for small-scale power system (SSPS). A SSPS is a collection of sources and loads that shares a common network which can be isolated during terrestrial disturbances. Micro-grids, naval ship electric power systems (NSEPS), aircraft power systems and telecommunication system power systems are typical examples of SSPS. The analysis and development of control systems for small-scale power systems (SSPS) lacks a defined slack bus. In addition, a change of a load or source will influence the real time system parameters of the system. Therefore, the control system should provide the required flexibility, to ensure operation as a single aggregated system. In most of the cases of a SSPS the sources and loads must be equipped with power electronic interfaces which can be modeled as a dynamic controllable quantity. The mathematical formulation of the micro-grid is carried out with the help of game theory, optimal control and fundamental theory of electrical power systems. Then the micro-grid can be viewed as a dynamical multi-objective optimization problem with nonlinear objectives and variables. Basically detailed analysis was done with optimal solutions with regards to start up transient modeling, bus selection modeling and level of communication within the micro-grids. In each approach a detail mathematical model is formed to observe the system response. The differential game theoretic approach was also used for modeling and optimization of startup transients. The startup transient controller was implemented with open loop, PI and feedback control methodologies. Then the hardware implementation was carried out to validate the theoretical results. The proposed game theoretic controller shows higher performances over traditional the PI controller during startup. In addition, the optimal transient surface is necessary while implementing the feedback controller for startup transient. Further, the experimental results are in agreement with the theoretical simulation. The bus selection and team communication was modeled with discrete and continuous game theory models. Although players have multiple choices, this controller is capable of choosing the optimum bus. Next the team communication structures are able to optimize the players’ Nash equilibrium point. All mathematical models are based on the local information of the load or source. As a result, these models are the keys to developing accurate distributed controllers.
Resumo:
Building energy meter network, based on per-appliance monitoring system, willbe an important part of the Advanced Metering Infrastructure. Two key issues exist for designing such networks. One is the network structure to be used. The other is the implementation of the network structure on a large amount of small low power devices, and the maintenance of high quality communication when the devices have electric connection with high voltage AC line. The recent advancement of low-power wireless communication makes itself the right candidate for house and building energy network. Among all kinds of wireless solutions, the low speed but highly reliable 802.15.4 radio has been chosen in this design. While many network-layer solutions have been provided on top of 802.15.4, an IPv6 based method is used in this design. 6LOWPAN is the particular protocol which adapts IP on low power personal network radio. In order to extend the network into building area without, a specific network layer routing mechanism-RPL, is included in this design. The fundamental unit of the building energy monitoring system is a smart wall plug. It is consisted of an electricity energy meter, a RF communication module and a low power CPU. The real challenge for designing such a device is its network firmware. In this design, IPv6 is implemented through Contiki operation system. Customize hardware driver and meter application program have been developed on top of the Contiki OS. Some experiments have been done, in order to prove the network ability of this system.
Resumo:
This thesis develops an effective modeling and simulation procedure for a specific thermal energy storage system commonly used and recommended for various applications (such as an auxiliary energy storage system for solar heating based Rankine cycle power plant). This thermal energy storage system transfers heat from a hot fluid (termed as heat transfer fluid - HTF) flowing in a tube to the surrounding phase change material (PCM). Through unsteady melting or freezing process, the PCM absorbs or releases thermal energy in the form of latent heat. Both scientific and engineering information is obtained by the proposed first-principle based modeling and simulation procedure. On the scientific side, the approach accurately tracks the moving melt-front (modeled as a sharp liquid-solid interface) and provides all necessary information about the time-varying heat-flow rates, temperature profiles, stored thermal energy, etc. On the engineering side, the proposed approach is unique in its ability to accurately solve – both individually and collectively – all the conjugate unsteady heat transfer problems for each of the components of the thermal storage system. This yields critical system level information on the various time-varying effectiveness and efficiency parameters for the thermal storage system.
Resumo:
The integration of novel nanomaterials with highly-functional biological molecules has advanced multiple fields including electronics, sensing, imaging, and energy harvesting. This work focuses on the creation of a new type of bio-nano hybrid substrate for military biosensing applications. Specifically it is shown that the nano-scale interactions of the optical protein bacteriorhodopsin and colloidal semiconductor quantum dots can be utilized as a generic sensing substrate. This work spans from the basic creation of the protein to its application in a novel biosensing system. The functionality of this sensor design originates from the unique interactions between the quantum dot and bacteriorhodopsin molecule when in nanoscale proximity. A direct energy transfer relationship has been established between coreshell quantum dots and the optical protein bacteriorhodopsin that substantially enhances the protein’s native photovoltaic capabilities. This energy transfer phenomena is largely distance dependent, in the sub-10nm realm, and is characterized experimentally at multiple separation distances. Experimental results on the energy transfer efficiency in this hybrid system correlate closely to theoretical predictions. Deposition of the hybrid system with nano-scale control has allowed for the utilization of this energy transfer phenomena as a modulation point for a functional biosensor prototype. This work reveals that quantum dots have the ability to activate the bacteriorhodopsin photocycle through both photonic and non-photonic energy transfer mechanisms. By altering the energy transferred to the bacteriorhodopsin molecule from the quantum dot, the electrical output of the protein can be modulated. A biosensing prototype was created in which the energy transfer relationship is altered upon target binding, demonstrating the applicability of a quantum dot/bacteriorhodopsin hybrid system for sensor applications. The electrical nature of this sensing substrate will allow for its efficient integration into a nanoelectronics array form, potentially leading to a small-low power sensing platform for remote toxin detection applications.
Resumo:
Wind power based generation has been rapidly growing world-wide during the recent past. In order to transmit large amounts of wind power over long distances, system planners may often add series compensation to existing transmission lines owing to several benefits such as improved steady-state power transfer limit, improved transient stability, and efficient utilization of transmission infrastructure. Application of series capacitors has posed resonant interaction concerns such as through subsynchronous resonance (SSR) with conventional turbine-generators. Wind turbine-generators may also be susceptible to such resonant interactions. However, not much information is available in literature and even engineering standards are yet to address these issues. The motivation problem for this research is based on an actual system switching event that resulted in undamped oscillations in a 345-kV series-compensated, typical ring-bus power system configuration. Based on time-domain ATP (Alternative Transients Program) modeling, simulations and analysis of system event records, the occurrence of subsynchronous interactions within the existing 345-kV series-compensated power system has been investigated. Effects of various small-signal and large-signal power system disturbances with both identical and non-identical wind turbine parameters (such as with a statistical-spread) has been evaluated. Effect of parameter variations on subsynchronous oscillations has been quantified using 3D-DFT plots and the oscillations have been identified as due to electrical self-excitation effects, rather than torsional interaction. Further, the generator no-load reactance and the rotor-side converter inner-loop controller gains have been identified as bearing maximum sensitivity to either damping or exacerbating the self-excited oscillations. A higher-order spectral analysis method based on modified Prony estimation has been successfully applied to the field records identifying dominant 9.79 Hz subsynchronous oscillations. Recommendations have been made for exploring countermeasures.