4 resultados para Sleep Initiation and Maintenance Disorders
em Digital Commons - Michigan Tech
Resumo:
This report is a case study of how Mwangalala community accesses water and how that access is maintained. Mwangalala community is located in the northern tip of Karonga district in Malawi, Africa. The case study evaluates how close the community is to meeting target 10 of the Millennium Development Goals, sustainable access to safe drinking water, and evaluates the current water system through Human Centered Design’s criteria of desirability, feasibility, and viability. It also makes recommendations to improve water security in Mwangalala community. Data was collected through two years of immersive observation, interviews with 30 families, and observing two wells on three separate occasions. The 30 interviews provided a sample size of over 10% of the community’s population. Participants were initially self-selected and then invited to participate in the research. I walked along community pathways and accepted invitations to join casual conversations in family compounds. After conversing I asked the family members if they would be willing to participate in my research by talking with me about water. Data collected from the interviews and the observations of two wells were compared and analyzed for common themes. Shallow wells or open wells represented the primary water source for 93% of interview participants. Boreholes were also present in the community, but produced unpalatable water due to high concentrations of dissolved iron and were not used as primary water sources. During observations 75% of community members who used the shallow well, primarily used for consumptive uses like cooking or dinking, were females. Boreholes were primarily used for non-consumptive uses such as watering crops or bathing and 77% of the users were male. Shallow wells could remain in disrepair for two months because the repairman was a volunteer, who was not compensated for the skilled labor required to repair the wells. Community members thought the maintenance fee went towards his salary, so did not compensate the repairman when he performed work. This miscommunication provided no incentive for the repairman to make well repairs a priority, and left community members frustrated with untimely repairs. Shallow wells with functional pumps failed to provide water when the water table levels drop during dry season, forcing community members to seek secondary or tertiary water sources. Open wells, converted from shallow wells after community members did not pay for repairs to the pump, represented 44% of the wells originally installed with Mark V hand pumps. These wells whose pumps were not repaired were located in fields and one beside a church. The functional wells were all located on school grounds or in family compounds, where responsibility for the well’s maintenance is clearly defined. Mwangalala community fails to meet Millennium Development goals because the wells used by the community do not provide sustainable access to safe drinking water. Open wells, used by half the participants in the study, lack a top covering to prevent contamination from debris and wildlife. Shallow well repair times are unsustainable, taking longer than two weeks to be repaired, primarily because the repair persons are expected to provide skilled labor to repair the wells without compensation. Improving water security for Mwangalala can be achieved by improving repair times on shallow wells and making water from boreholes palatable. There are no incentives for a volunteer repair person to fix wells in a timely manner. Repair times can be improved by reducing the number of wells a repair person is responsible for and compensating the person for the skilled labor provided. Water security would be further improved by removing iron particulates from borehole water, thus rendering it palatable. This is possible through point of use filtration utilizing ceramic candles; this would make pumped water available year-round.
Resumo:
Little or poor quality sleep is often reported in patients suffering from acute or chronic pain. Conversely, sleep loss has been known to elevate pain perception; thus a potential bi-direction relationship exists between sleep deprivation and pain. The effect of sleep deprivation on the thermal pain intensity has yet to be determined, furthermore, sex differences in pain have not been examined following sleep deprivation. There is also a higher prevalence of insomnia in women, and reports indicate that sleep quality is diminished and pain sensitivity may be greater during high hormone phases of the menstrual cycle. In Study 1 we examined the effects of 24-hour total sleep deprivation (TSD) on pain intensity during a 2-minute cold pressor test (CPT). We hypothesized that TSD would augment thermal pain intensity during CPT and women would demonstrate an elevated response compare to men. In Study 2 we investigated the effects of menstrual phase on pain intensity during CPT following TSD. We hypothesized that pain intensity would be augmented during the mid-luteal (ML) phase of the menstrual cycle. In Study 1, pain intensity was recorded during CPT in 14 men and 13 women after normal sleep (NS) and TSD. Pain intensity responses during CPT were elevated in both conditions; however, pain intensity was augmented (~ 1.2 a.u.) following TSD. When analyzed for sex differences, pain intensity was not different between men and women in either condition. In Study 2, pain intensity was recorded during CPT in 10 female subjects during the early follicular (EF) and ML phases of the menstrual cycle after TSD. Estradiol and progesterone levels were elevated during the ML phase, however, pain intensity was not different between the two phases. We conclude that TSD significantly augments pain intensity during CPT, but this response is not sex dependent. We further demonstrate that the collective effect of TSD and elevated gonadal hormone concentrations do not result in a differential pain response during the EF and ML phases of the menstrual cycle. Collectively, sleep loss augments pain intensity ratings in men and women and may contribute to sleep loss in painful conditions.
Resumo:
The objective of this doctoral research is to investigate the internal frost damage due to crystallization pore pressure in porous cement-based materials by developing computational and experimental characterization tools. As an essential component of the U.S. infrastructure system, the durability of concrete has significant impact on maintenance costs. In cold climates, freeze-thaw damage is a major issue affecting the durability of concrete. The deleterious effects of the freeze-thaw cycle depend on the microscale characteristics of concrete such as the pore sizes and the pore distribution, as well as the environmental conditions. Recent theories attribute internal frost damage of concrete is caused by crystallization pore pressure in the cold environment. The pore structures have significant impact on freeze-thaw durability of cement/concrete samples. The scanning electron microscope (SEM) and transmission X-ray microscopy (TXM) techniques were applied to characterize freeze-thaw damage within pore structure. In the microscale pore system, the crystallization pressures at sub-cooling temperatures were calculated using interface energy balance with thermodynamic analysis. The multi-phase Extended Finite Element Modeling (XFEM) and bilinear Cohesive Zone Modeling (CZM) were developed to simulate the internal frost damage of heterogeneous cement-based material samples. The fracture simulation with these two techniques were validated by comparing the predicted fracture behavior with the captured damage from compact tension (CT) and single-edge notched beam (SEB) bending tests. The study applied the developed computational tools to simulate the internal frost damage caused by ice crystallization with the two dimensional (2-D) SEM and three dimensional (3-D) reconstructed SEM and TXM digital samples. The pore pressure calculated from thermodynamic analysis was input for model simulation. The 2-D and 3-D bilinear CZM predicted the crack initiation and propagation within cement paste microstructure. The favorably predicted crack paths in concrete/cement samples indicate the developed bilinear CZM techniques have the ability to capture crack nucleation and propagation in cement-based material samples with multiphase and associated interface. By comparing the computational prediction with the actual damaged samples, it also indicates that the ice crystallization pressure is the main mechanism for the internal frost damage in cementitious materials.
Resumo:
Recent epidemiological studies report a consistent association between short sleep and incidence of hypertension, as well as short sleep and cardiovascular disease-related mortality. While the association between short sleep and hypertension appears to be stronger in women than men, the mechanisms underlying the relations between sleep deprivation, stress, risks of cardiovascular diseases, and sex remain unclear. We conducted two studies to investigate the underlying neural mechanisms of these relations. In study 1, we examined sympathetic neural and blood pressure responses to experimentally-induced sleep deprivation in men and women. We further investigated the influence of sleep deprivation on cardiovascular reactivity to acute stress. In study 2, we examined the neural and cardiovascular function throughout the ovarian cycle in sleep deprived women. Twenty-eight young healthy subjects (14men and 14 women) were tested twice in study 1, once after normal sleep (NS) and once after 24-h total sleep deprivation (TSD). We measured the blood pressure, heart rate (HR), muscle sympathetic nerve activity (MSNA) and forearm blood flow (FBF) during 10min baseline, 5min of mental stress (MS) and 2 min cold pressor test (CPT). We demonstrated that TSD increased resting arterial blood pressure to a similar extent in both men and women, but MSNA decreased only in men following TSD. This MSNA response was associated with altered baroreflex function in women and divergent testosterone responses to TSD between men and women. Regarding TSD and cardiovascular reactivity, TSD elicited augmented HR reactivity and delayed recovery during both MS and CPT in men and women, and responses between sexes were not statistically different. Fourteen young healthy women participated in study 2. Subjects were tested twice, once during their early follicular (EF) phase after TSD, once during their mid-luteal (ML) phase after TSD. Blood pressure, HR, MSNA, and FBF were recorded during 10min baseline, 5 min MS, and 2 min CPT. We observed an augmented resting supine blood pressure during EF compared to ML in sleep deprived women. In contrast, resting MSNA, as well as cardiovascular responses to stressors, were similar between EF and ML after TSD. In conclusion, we observed sex differences in MSNA responses to TSD that demonstrate reductions of MSNA in men, but not women. TSD elicited augmented HR reactivity and delayed HR recovery to acute stressors similarly in men and women. We also reported an augmented supine blood pressure during EF compared to ML in sleep deprived women. These novel findings provide new and valuable mechanistic insight regarding the complex and poorly understood relations among sleep deprivation, sex, stress, and risk of cardiovascular disease.