2 resultados para Size structure
em Digital Commons - Michigan Tech
Resumo:
Graphene is one of the most important materials. In this research, the structures and properties of graphene nano disks (GND) with a concentric shape were investigated by Density Functional Theory (DFT) calculations, in which the most effective DFT methods - B3lyp and Pw91pw91 were employed. It was found that there are two types of edges - Zigzag and Armchair in concentric graphene nano disks (GND). The bond length between armchair-edge carbons is much shorter than that between zigzag-edge carbons. For C24 GND that consists of 24 carbon atoms, only armchair edge with 12 atoms is formed. For a GND larger than the C24 GND, both armchair and zigzag edges co-exist. Furthermore, when the number of carbon atoms in armchair-edge are always 12, the number of zigzag-edge atoms increases with increasing the size of a GND. In addition, the stability of a GND is enhanced with increasing its size, because the ratio of edge-atoms to non-edge-atoms decreases. The size effect of a graphene nano disk on its HOMO-LUMO energy gap was evaluated. C6 and C24 GNDs possess HOMO-LUMO gaps of 1.7 and 2.1eV, respectively, indicating that they are semi-conductors. In contrast, C54 and C96 GNDs are organic metals, because their HOMO-LUMO gaps are as low as 0.3 eV. The effect of doping foreign atoms to the edges of GNDs on their structures, stabilities, and HOMO-LUMO energy gaps were also examined. When foreign atoms are attached to the edge of a GND, the original unsaturated carbon atoms become saturated. As a result, both of the C-C bonds lengths and the stability of a GND increase. Furthermore, the doping effect on the HOMO-LUMO energy gap is dependent on the type of doped atoms. The doping H, F, or OH into the edge of a GND increases its HOMO-LUMO energy gap. In contrast, a Li-doped GND has a lower HOMO-LUMO energy gap than that without doping. Therefore, Li-doping can increase the electrical conductance of a GND, whereas H, F, or OH-doping decreases its conductance.
Resumo:
Chapter 1 is used to introduce the basic tools and mechanics used within this thesis. Most of the definitions used in the thesis will be defined, and we provide a basic survey of topics in graph theory and design theory pertinent to the topics studied in this thesis. In Chapter 2, we are concerned with the study of fixed block configuration group divisible designs, GDD(n; m; k; λ1; λ2). We study those GDDs in which each block has configuration (s; t), that is, GDDs in which each block has exactly s points from one of the two groups and t points from the other. Chapter 2 begins with an overview of previous results and constructions for small group size and block sizes 3, 4 and 5. Chapter 2 is largely devoted to presenting constructions and results about GDDs with two groups and block size 6. We show the necessary conditions are sufficient for the existence of GDD(n, 2, 6; λ1, λ2) with fixed block configuration (3; 3). For configuration (1; 5), we give minimal or nearminimal index constructions for all group sizes n ≥ 5 except n = 10, 15, 160, or 190. For configuration (2, 4), we provide constructions for several families ofGDD(n, 2, 6; λ1, λ2)s. Chapter 3 addresses characterizing (3, r)-regular graphs. We begin with providing previous results on the well studied class of (2, r)-regular graphs and some results on the structure of large (t; r)-regular graphs. In Chapter 3, we completely characterize all (3, 1)-regular and (3, 2)-regular graphs, as well has sharpen existing bounds on the order of large (3, r)- regular graphs of a certain form for r ≥ 3. Finally, the appendix gives computational data resulting from Sage and C programs used to generate (3, 3)-regular graphs on less than 10 vertices.