2 resultados para Signal generators
em Digital Commons - Michigan Tech
Resumo:
This report is a dissertation proposal that focuses on the energy balance within an internal combustion engine with a unique coolant-based waste heat recovery system. It has been predicted by the U.S. Energy Information Administration that the transportation sector in the United States will consume approximately 15 million barrels per day in liquid fuels by the year 2025. The proposed coolant-based waste heat recovery technique has the potential to reduce the yearly usage of those liquid fuels by nearly 50 million barrels by only recovering even a modest 1% of the wasted energy within the coolant system. The proposed waste heat recovery technique implements thermoelectric generators on the outside cylinder walls of an internal combustion engine. For this research, one outside cylinder wall of a twin cylinder 26 horsepower water-cooled gasoline engine will be implemented with a thermoelectric generator surrogate material. The vertical location of these TEG surrogates along the water jacket will be varied along with the TEG surrogate thermal conductivity. The aim of this proposed dissertation is to attain empirical evidence of the impact, including energy distribution and cylinder wall temperatures, of installing TEGs in the water jacket area. The results can be used for future research on larger engines and will also assist with proper TEG selection to maximize energy recovery efficiencies.
Resumo:
Wind power based generation has been rapidly growing world-wide during the recent past. In order to transmit large amounts of wind power over long distances, system planners may often add series compensation to existing transmission lines owing to several benefits such as improved steady-state power transfer limit, improved transient stability, and efficient utilization of transmission infrastructure. Application of series capacitors has posed resonant interaction concerns such as through subsynchronous resonance (SSR) with conventional turbine-generators. Wind turbine-generators may also be susceptible to such resonant interactions. However, not much information is available in literature and even engineering standards are yet to address these issues. The motivation problem for this research is based on an actual system switching event that resulted in undamped oscillations in a 345-kV series-compensated, typical ring-bus power system configuration. Based on time-domain ATP (Alternative Transients Program) modeling, simulations and analysis of system event records, the occurrence of subsynchronous interactions within the existing 345-kV series-compensated power system has been investigated. Effects of various small-signal and large-signal power system disturbances with both identical and non-identical wind turbine parameters (such as with a statistical-spread) has been evaluated. Effect of parameter variations on subsynchronous oscillations has been quantified using 3D-DFT plots and the oscillations have been identified as due to electrical self-excitation effects, rather than torsional interaction. Further, the generator no-load reactance and the rotor-side converter inner-loop controller gains have been identified as bearing maximum sensitivity to either damping or exacerbating the self-excited oscillations. A higher-order spectral analysis method based on modified Prony estimation has been successfully applied to the field records identifying dominant 9.79 Hz subsynchronous oscillations. Recommendations have been made for exploring countermeasures.