5 resultados para Sentence and word aligners evaluation

em Digital Commons - Michigan Tech


Relevância:

100.00% 100.00%

Publicador:

Resumo:

This thesis evaluates a novel asymmetric capacitor incorporating a carbon foam supported nickel hydroxide positive electrode and a carbon black negative electrode. A series of symmetric capacitors were prepared to characterize the carbon black (CB) negative electrode. The influence of the binder, PTFE, content on the cell properties was evaluated. X-ray diffraction characterization of the nickel electrode during cycling is also presented. The 3 wt% and 5 wt% PTFE/CB symmetric cells were examined using cyclic voltammetry (CV) and constant current charge/discharge measurements. As compared with symmetric cells containing more PTFE, the 3 wt% cell has the highest average specific capacitance, energy density and power density over 300 cycles, 121.8 F/g, 6.44 Wh/kg, and 604.1 W/kg, respectively. Over the 3 to 10 wt% PTFE/CB range, the 3 wt% sample exhibited the lowest effective resistance and the highest BET surface area. Three asymmetric cells (3 wt% PTFE/CB negative electrode and a nickel positive) were fabricated; cycle life was examined at 3 current densities. The highest average energy and power densities over 1000 cycles were 20 Wh/kg (21 mA/cm2) and 715 W/kg (31 mA/cm2), respectively. The longest cycle life was 11,505 cycles (at 8 mA/cm2), with an average efficiency of 79% and an average energy density of 14 Wh/kg. The XRD results demonstrate that the cathodically deposited nickel electrode is a typical α-Ni(OH)2 with the R3m structure (ABBCCA stacking); the charged electrodes are 3γ-NiOOH with the same stacking as the α-type; the discharged electrodes (including as-formed electrode) are aged to β’-Ni(OH)2 (a disordered β) with the P3m structure (ABAB stacking). A 3γ remnant was observed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A considerable portion of public lands in the United States is at risk of uncharacteristically severe wildfires due to a history of fire suppression. Wildfires already have detrimental impacts on the landscape and on communities in the wildland-urban interface (WUI) due to unnatural and overstocked forests. Strategies to mitigate wildfire risk include mechanical thinning and prescribed burning in areas with high wildfire risk. The material removed is often of little or no economic value. Woody biomass utilization (WBU) could offset the costs of hazardous fuel treatments if removed material could be used for wood products, heat, or electricity production. However, barriers due to transportation costs, removal costs, and physical constraints (such as steep slopes) hinder woody biomass utilization. Various federal and state policies attempt to overcome these barriers. WBU has the potential to aid in wildfire mitigation and meet growing state mandates for renewable energy. This research utilizes interview data from individuals involved with on-the-ground woody biomass removal and utilization to determine how federal and state policies influence woody biomass utilization. Results suggest that there is not one over-arching policy that hinders or promotes woody biomass utilization, but rather woody biomass utilization is hindered by organizational constraints related to time, cost, and quality of land management agencies’ actions. However, the use of stewardship contracting (a hybrid timber sale and service contract) shows promise for increased WBU, especially in states with favorable tax policies and renewable energy mandates. Policy recommendations to promote WBU include renewal of stewardship contracting legislations and a re-evaluation of land cover types suited for WBU. Potential future policies to consider include the indirect role of carbon dioxide emission reduction activities to promote wood energy and future impacts of air quality regulations.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Electrochemical capacitors have been an important development in recent years in the field of energy storage. Capacitors can be developed by utilizing either double layer capacitance at the electrode/solution interfaces alone or in combination with a battery electrode associated with a faradic redox process in one electrode. An asymmetric capacitor consisting of electrochemically deposited nickel hydroxide, supported on carbon foam as a positive electrode and carbon sheet as a negative electrode has been successfully assembled and cycled. One objective of this study has been to demonstrate the viability of the nickel carbon foam positive electrode, especially in terms of cycle life. Electrochemical characterization shows stable, high cycle performance in 26 wt. % KOH electrolyte with a maximum energy density of 4.1 Wh/Kg and a relaxation time constant of 6.24 s. This cell has demonstrated high cycle life, 14,500 cycles, with efficiency better than 98%. In addition, the cell failure mechanism and self-discharge behavior of the aforesaid capacitor are analyzed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this study, the use of magnesium as a Hall thruster propellant was evaluated. A xenon Hall thruster was modified such that magnesium propellant could be loaded into the anode and use waste heat from the thruster discharge to drive the propellant vaporization. A control scheme was developed, which allowed for precise control of the mass flow rate while still using plasma heating as the main mechanism for evaporation. The thruster anode, which also served as the propellant reservoir, was designed such that the open area was too low for sufficient vapor flow at normal operating temperatures (i.e. plasma heating alone). The remaining heat needed to achieve enough vapor flow to sustain thruster discharge came from a counter-wound resistive heater located behind the anode. The control system has the ability to arrest thermal runaway in a direct evaporation feed system and stabilize the discharge current during voltage-limited operation. A proportional-integral-derivative control algorithm was implemented to enable automated operation of the mass flow control system using the discharge current as the measured variable and the anode heater current as the controlled parameter. Steady-state operation at constant voltage with discharge current excursions less than 0.35 A was demonstrated for 70 min. Using this long-duration method, stable operation was achieved with heater powers as low as 6% of the total discharge power. Using the thermal mass flow control system the thruster operated stably enough and long enough that performance measurements could be obtained and compared to the performance of the thruster using xenon propellant. It was found that when operated with magnesium, the thruster has thrust ranging from 34 mN at 200 V to 39 mN at 300 V with 1.7 mg/s of propellant. It was found to have 27 mN of thrust at 300 V using 1.0 mg/s of propellant. The thrust-to-power ratio ranged from 24 mN/kW at 200 V to 18 mN/kW at 300 volts. The specific impulse was 2000 s at 200 V and upwards of 2700 s at 300 V. The anode efficiency was found to be ~23% using magnesium, which is substantially lower than the 40% anode efficiency of xenon at approximately equivalent molar flow rates. Measurements in the plasma plume of the thruster—operated using magnesium and xenon propellants—were obtained using a Faraday probe to measure off-axis current distribution, a retarding potential analyzer to measure ion energy, and a double Langmuir probe to measure plasma density, electron temperature, and plasma potential. Additionally, the off axis current distributions and ion energy distributions were compared to measurements made in krypton and bismuth plasmas obtained in previous studies of the same thruster. Comparisons showed that magnesium had the largest beam divergence of the four propellants while the others had similar divergence. The comparisons also showed that magnesium and krypton both had very low voltage utilization compared to xenon and bismuth. It is likely that the differences in plume structure are due to the atomic differences between the propellants; the ionization mean free path goes down with increasing atomic mass. Magnesium and krypton have long ionization mean free paths and therefore require physically larger thruster dimensions for efficient thruster operation and would benefit from magnetic shielding.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The continual eruptive activity, occurrence of an ancestral catastrophic collapse, and inherent geologic features of Pacaya volcano (Guatemala) demands an evaluation of potential collapse hazards. This thesis merges techniques in the field and laboratory for a better rock mass characterization of volcanic slopes and slope stability evaluation. New field geological, structural, rock mechanical and geotechnical data on Pacaya is reported and is integrated with laboratory tests to better define the physical-mechanical rock mass properties. Additionally, this data is used in numerical models for the quantitative evaluation of lateral instability of large sector collapses and shallow landslides. Regional tectonics and local structures indicate that the local stress regime is transtensional, with an ENE-WSW sigma 3 stress component. Aligned features trending NNW-SSE can be considered as an expression of this weakness zone that favors magma upwelling to the surface. Numerical modeling suggests that a large-scale collapse could be triggered by reasonable ranges of magma pressure (greater than or equal to 7.7 MPa if constant along a central dyke) and seismic acceleration (greater than or equal to 460 cm/s2), and that a layer of pyroclastic deposits beneath the edifice could have been a factor which controlled the ancestral collapse. Finally, the formation of shear cracks within zones of maximum shear strain could provide conduits for lateral flow, which would account for long lava flows erupted at lower elevations.