5 resultados para Sensor array processing
em Digital Commons - Michigan Tech
Resumo:
In a statistical inference scenario, the estimation of target signal or its parameters is done by processing data from informative measurements. The estimation performance can be enhanced if we choose the measurements based on some criteria that help to direct our sensing resources such that the measurements are more informative about the parameter we intend to estimate. While taking multiple measurements, the measurements can be chosen online so that more information could be extracted from the data in each measurement process. This approach fits well in Bayesian inference model often used to produce successive posterior distributions of the associated parameter. We explore the sensor array processing scenario for adaptive sensing of a target parameter. The measurement choice is described by a measurement matrix that multiplies the data vector normally associated with the array signal processing. The adaptive sensing of both static and dynamic system models is done by the online selection of proper measurement matrix over time. For the dynamic system model, the target is assumed to move with some distribution and the prior distribution at each time step is changed. The information gained through adaptive sensing of the moving target is lost due to the relative shift of the target. The adaptive sensing paradigm has many similarities with compressive sensing. We have attempted to reconcile the two approaches by modifying the observation model of adaptive sensing to match the compressive sensing model for the estimation of a sparse vector.
Resumo:
The objective of the work described in this dissertation is the development of new wireless passive force monitoring platforms for applications in the medical field, specifically monitoring lower limb prosthetics. The developed sensors consist of stress sensitive, magnetically soft amorphous metallic glass materials. The first technology is based on magnetoelastic resonance. Specifically, when exposed to an AC excitation field along with a constant DC bias field, the magnetoelastic material mechanically vibrates, and may reaches resonance if the field frequency matches the mechanical resonant frequency of the material. The presented work illustrates that an applied loading pins portions of the strip, effectively decreasing the strip length, which results in an increase in the frequency of the resonance. The developed technology is deployed in a prototype lower limb prosthetic sleeve for monitoring forces experienced by the distal end of the residuum. This work also reports on the development of a magnetoharmonic force sensor comprised of the same material. According to the Villari effect, an applied loading to the material results in a change in the permeability of the magnetic sensor which is visualized as an increase in the higher-order harmonic fields of the material. Specifically, by applying a constant low frequency AC field and sweeping the applied DC biasing field, the higher-order harmonic components of the magnetic response can be visualized. This sensor technology was also instrumented onto a lower limb prosthetic for proof of deployment; however, the magnetoharmonic sensor illustrated complications with sensor positioning and a necessity to tailor the interface mechanics between the sensing material and the surface being monitored. The novelty of these two technologies is in their wireless passive nature which allows for long term monitoring over the life time of a given device. Additionally, the developed technologies are low cost. Recommendations for future works include improving the system for real-time monitoring, useful for data collection outside of a clinical setting.
Resumo:
Sustainable yields from water wells in hard-rock aquifers are achieved when the well bore intersects fracture networks. Fracture networks are often not readily discernable at the surface. Lineament analysis using remotely sensed satellite imagery has been employed to identify surface expressions of fracturing, and a variety of image-analysis techniques have been successfully applied in “ideal” settings. An ideal setting for lineament detection is where the influences of human development, vegetation, and climatic situations are minimal and hydrogeological conditions and geologic structure are known. There is not yet a well-accepted protocol for mapping lineaments nor have different approaches been compared in non-ideal settings. A new approach for image-processing/synthesis was developed to identify successful satellite imagery types for lineament analysis in non-ideal terrain. Four satellite sensors (ASTER, Landsat7 ETM+, QuickBird, RADARSAT-1) and a digital elevation model were evaluated for lineament analysis in Boaco, Nicaragua, where the landscape is subject to varied vegetative cover, a plethora of anthropogenic features, and frequent cloud cover that limit the availability of optical satellite data. A variety of digital image processing techniques were employed and lineament interpretations were performed to obtain 12 complementary image products that were evaluated subjectively to identify lineaments. The 12 lineament interpretations were synthesized to create a raster image of lineament zone coincidence that shows the level of agreement among the 12 interpretations. A composite lineament interpretation was made using the coincidence raster to restrict lineament observations to areas where multiple interpretations (at least 4) agree. Nine of the 11 previously mapped faults were identified from the coincidence raster. An additional 26 lineaments were identified from the coincidence raster, and the locations of 10 were confirmed by field observation. Four manual pumping tests suggest that well productivity is higher for wells proximal to lineament features. Interpretations from RADARSAT-1 products were superior to interpretations from other sensor products, suggesting that quality lineament interpretation in this region requires anthropogenic features to be minimized and topographic expressions to be maximized. The approach developed in this study has the potential to improve siting wells in non-ideal regions.
Resumo:
Gas sensors have been used widely in different important area including industrial control, environmental monitoring, counter-terrorism and chemical production. Micro-fabrication offers a promising way to achieve sensitive and inexpensive gas sensors. Over the years, various MEMS gas sensors have been investigated and fabricated. One significant type of MEMS gas sensors is based on mass change detection and the integration with specific polymer. This dissertation aims to make contributions to the design and fabrication of MEMS resonant mass sensors with capacitance actuation and sensing that lead to improved sensitivity. To accomplish this goal, the research has several objectives: (1) Define an effective measure for evaluating the sensitivity of resonant mass devices; (2) Model the effects of air damping on microcantilevers and validate models using laser measurement system (3) Develop design guidelines for improving sensitivity in the presence of air damping; (4) Characterize the degree of uncertainty in performance arising from fabrication variation for one or more process sequences, and establish design guidelines for improved robustness. Work has been completed toward these objectives. An evaluation measure has been developed and compared to an RMS based measure. Analytic models of air damping for parallel plate that include holes are compared with a COMSOL model. The models have been used to identify cantilever design parameters that maximize sensitivity. Additional designs have been modeled with COMSOL and the development of an analytical model for Fixed-free cantilever geometries with holes has been developed. Two process flows have been implemented and compared. A number of cantilever designs have been fabricated and the uncertainty in process has been investigated. Variability from processing have been evaluated and characterized.
Resumo:
By providing vehicle-to-vehicle and vehicle-to-infrastructure wireless communications, vehicular ad hoc networks (VANETs), also known as the “networks on wheels”, can greatly enhance traffic safety, traffic efficiency and driving experience for intelligent transportation system (ITS). However, the unique features of VANETs, such as high mobility and uneven distribution of vehicular nodes, impose critical challenges of high efficiency and reliability for the implementation of VANETs. This dissertation is motivated by the great application potentials of VANETs in the design of efficient in-network data processing and dissemination. Considering the significance of message aggregation, data dissemination and data collection, this dissertation research targets at enhancing the traffic safety and traffic efficiency, as well as developing novel commercial applications, based on VANETs, following four aspects: 1) accurate and efficient message aggregation to detect on-road safety relevant events, 2) reliable data dissemination to reliably notify remote vehicles, 3) efficient and reliable spatial data collection from vehicular sensors, and 4) novel promising applications to exploit the commercial potentials of VANETs. Specifically, to enable cooperative detection of safety relevant events on the roads, the structure-less message aggregation (SLMA) scheme is proposed to improve communication efficiency and message accuracy. The scheme of relative position based message dissemination (RPB-MD) is proposed to reliably and efficiently disseminate messages to all intended vehicles in the zone-of-relevance in varying traffic density. Due to numerous vehicular sensor data available based on VANETs, the scheme of compressive sampling based data collection (CS-DC) is proposed to efficiently collect the spatial relevance data in a large scale, especially in the dense traffic. In addition, with novel and efficient solutions proposed for the application specific issues of data dissemination and data collection, several appealing value-added applications for VANETs are developed to exploit the commercial potentials of VANETs, namely general purpose automatic survey (GPAS), VANET-based ambient ad dissemination (VAAD) and VANET based vehicle performance monitoring and analysis (VehicleView). Thus, by improving the efficiency and reliability in in-network data processing and dissemination, including message aggregation, data dissemination and data collection, together with the development of novel promising applications, this dissertation will help push VANETs further to the stage of massive deployment.