5 resultados para Segment target
em Digital Commons - Michigan Tech
Resumo:
Target localization has a wide range of military and civilian applications in wireless mobile networks. Examples include battle-field surveillance, emergency 911 (E911), traffc alert, habitat monitoring, resource allocation, routing, and disaster mitigation. Basic localization techniques include time-of-arrival (TOA), direction-of-arrival (DOA) and received-signal strength (RSS) estimation. Techniques that are proposed based on TOA and DOA are very sensitive to the availability of Line-of-sight (LOS) which is the direct path between the transmitter and the receiver. If LOS is not available, TOA and DOA estimation errors create a large localization error. In order to reduce NLOS localization error, NLOS identifcation, mitigation, and localization techniques have been proposed. This research investigates NLOS identifcation for multiple antennas radio systems. The techniques proposed in the literature mainly use one antenna element to enable NLOS identifcation. When a single antenna is utilized, limited features of the wireless channel can be exploited to identify NLOS situations. However, in DOA-based wireless localization systems, multiple antenna elements are available. In addition, multiple antenna technology has been adopted in many widely used wireless systems such as wireless LAN 802.11n and WiMAX 802.16e which are good candidates for localization based services. In this work, the potential of spatial channel information for high performance NLOS identifcation is investigated. Considering narrowband multiple antenna wireless systems, two xvNLOS identifcation techniques are proposed. Here, the implementation of spatial correlation of channel coeffcients across antenna elements as a metric for NLOS identifcation is proposed. In order to obtain the spatial correlation, a new multi-input multi-output (MIMO) channel model based on rough surface theory is proposed. This model can be used to compute the spatial correlation between the antenna pair separated by any distance. In addition, a new NLOS identifcation technique that exploits the statistics of phase difference across two antenna elements is proposed. This technique assumes the phases received across two antenna elements are uncorrelated. This assumption is validated based on the well-known circular and elliptic scattering models. Next, it is proved that the channel Rician K-factor is a function of the phase difference variance. Exploiting Rician K-factor, techniques to identify NLOS scenarios are proposed. Considering wideband multiple antenna wireless systems which use MIMO-orthogonal frequency division multiplexing (OFDM) signaling, space-time-frequency channel correlation is exploited to attain NLOS identifcation in time-varying, frequency-selective and spaceselective radio channels. Novel NLOS identi?cation measures based on space, time and frequency channel correlation are proposed and their performances are evaluated. These measures represent a better NLOS identifcation performance compared to those that only use space, time or frequency.
Resumo:
Tracking or target localization is used in a wide range of important tasks from knowing when your flight will arrive to ensuring your mail is received on time. Tracking provides the location of resources enabling solutions to complex logistical problems. Wireless Sensor Networks (WSN) create new opportunities when applied to tracking, such as more flexible deployment and real-time information. When radar is used as the sensing element in a tracking WSN better results can be obtained; because radar has a comparatively larger range both in distance and angle to other sensors commonly used in WSNs. This allows for less nodes deployed covering larger areas, saving money. In this report I implement a tracking WSN platform similar to what was developed by Lim, Wang, and Terzis. This consists of several sensor nodes each with a radar, a sink node connected to a host PC, and a Matlab© program to fuse sensor data. I have re-implemented their experiment with my WSN platform for tracking a non-cooperative target to verify their results and also run simulations to compare. The results of these tests are discussed and some future improvements are proposed.
Resumo:
In a statistical inference scenario, the estimation of target signal or its parameters is done by processing data from informative measurements. The estimation performance can be enhanced if we choose the measurements based on some criteria that help to direct our sensing resources such that the measurements are more informative about the parameter we intend to estimate. While taking multiple measurements, the measurements can be chosen online so that more information could be extracted from the data in each measurement process. This approach fits well in Bayesian inference model often used to produce successive posterior distributions of the associated parameter. We explore the sensor array processing scenario for adaptive sensing of a target parameter. The measurement choice is described by a measurement matrix that multiplies the data vector normally associated with the array signal processing. The adaptive sensing of both static and dynamic system models is done by the online selection of proper measurement matrix over time. For the dynamic system model, the target is assumed to move with some distribution and the prior distribution at each time step is changed. The information gained through adaptive sensing of the moving target is lost due to the relative shift of the target. The adaptive sensing paradigm has many similarities with compressive sensing. We have attempted to reconcile the two approaches by modifying the observation model of adaptive sensing to match the compressive sensing model for the estimation of a sparse vector.
Resumo:
This study will look at the passenger air bag (PAB) performance in a fix vehicle environment using Partial Low Risk Deployment (PLRD) as a strategy. This development will follow test methods against actual baseline vehicle data and Federal Motor Vehicle Safety Standards 208 (FMVSS 208). FMVSS 208 states that PAB compliance in vehicle crash testing can be met using one of three deployment methods. The primary method suppresses PAB deployment, with the use of a seat weight sensor or occupant classification sensor (OCS), for three-year old and six-year old occupants including the presence of a child seat. A second method, PLRD allows deployment on all size occupants suppressing only for the presents of a child seat. A third method is Low Risk Deployment (LRD) which allows PAB deployment in all conditions, all statures including any/all child seats. This study outlines a PLRD development solution for achieving FMVSS 208 performance. The results of this study should provide an option for system implementation including opportunities for system efficiency and other considerations. The objective is to achieve performance levels similar too or incrementally better than the baseline vehicles National Crash Assessment Program (NCAP) Star rating. In addition, to define systemic flexibility where restraint features can be added or removed while improving occupant performance consistency to the baseline. A certified vehicles’ air bag system will typically remain in production until the vehicle platform is redesigned. The strategy to enable the PLRD hypothesis will be to first match the baseline out of position occupant performance (OOP) for the three and six-year old requirements. Second, improve the 35mph belted 5th percentile female NCAP star rating over the baseline vehicle. Third establish an equivalent FMVSS 208 certification for the 25mph unbelted 50th percentile male. FMVSS 208 high-speed requirement defines the federal minimum crash performance required for meeting frontal vehicle crash-test compliance. The intent of NCAP 5-Star rating is to provide the consumer with information about crash protection, beyond what is required by federal law. In this study, two vehicles segments were used for testing to compare and contrast to their baseline vehicles performance. Case Study 1 (CS1) used a cross over vehicle platform and Case Study 2 (CS2) used a small vehicle segment platform as their baselines. In each case study, the restraints systems were from different restraint supplier manufactures and each case contained that suppliers approach to PLRD. CS1 incorporated a downsized twins shaped bag, a carryover inflator, standard vents, and a strategic positioned bag diffuser to help disperse the flow of gas to improve OOP. The twin shaped bag with two segregated sections (lobes) to enabled high-speed baseline performance correlation on the HYGE Sled. CS2 used an A-Symmetric (square shape) PAB with standard size vents, including a passive vent, to obtain OOP similar to the baseline. The A-Symmetric shape bag also helped to enabled high-speed baseline performance improvements in HYGE Sled testing in CS2. The anticipated CS1 baseline vehicle-pulse-index (VPI) target was in the range of 65-67. However, actual dynamic vehicle (barrier) testing was overshadowed with the highest crash pulse from the previous tested vehicles with a VPI of 71. The result from the 35mph NCAP Barrier test was a solid 4-Star (4.7 Star) respectfully. In CS2, the vehicle HYGE Sled development VPI range, from the baseline was 61-62 respectively. Actual NCAP test produced a chest deflection result of 26mm versus the anticipated baseline target of 12mm. The initial assessment of this condition was thought to be due to the vehicles significant VPI increase to 67. A subsequent root cause investigation confirmed a data integrity issue due to the instrumentation. In an effort to establish a true vehicle test data point a second NCAP test was performed but faced similar instrumentation issues. As a result, the chest deflect hit the target of 12.1mm; however a femur load spike, similar to the baseline, now skewed the results. With noted level of performance improvement in chest deflection, the NCAP star was assessed as directional for 5-Star capable performance. With an actual rating of 3-Star due to instrumentation, using data extrapolation raised the ratings to 5-Star. In both cases, no structural changes were made to the surrogate vehicle and the results in each case matched their perspective baseline vehicle platforms. These results proved the PLRD is viable for further development and production implementation.