5 resultados para Science education|Curriculum development
em Digital Commons - Michigan Tech
Resumo:
The reported research project involved studying how teaching science using demonstrations, inquiry-based cooperative learning groups, or a combination of the two methods affected sixth grade students’ understanding of air pressure and density. Three different groups of students were each taught the two units using different teaching methods. Group one learned about the topics through both demonstrations and inquirybased cooperative learning, whereas group two only viewed demonstrations, and group three only participated in inquiry-based learning in cooperative learning groups. The study was designed to answer the following two questions: 1. Which teaching strategy works best for supporting student understanding of air pressure and density: demonstrations, inquirybased labs in cooperative learning groups, or a combination of the two? 2. And what effect does the time spent engaging in a particular learning experience (demonstrations or labs) have on student learning? Overall, the data did not provide sufficient evidence that one method of learning was more effective than the others. The results also suggested that spending more time on a unit does not necessarily equate to a better understanding of the concepts by the students. Implications for science instruction are discussed.
Resumo:
This report shares my efforts in developing a solid unit of instruction that has a clear focus on student outcomes. I have been a teacher for 20 years and have been writing and revising curricula for much of that time. However, most has been developed without the benefit of current research on how students learn and did not focus on what and how students are learning. My journey as a teacher has involved a lot of trial and error. My traditional method of teaching is to look at the benchmarks (now content expectations) to see what needs to be covered. My unit consists of having students read the appropriate sections in the textbook, complete work sheets, watch a video, and take some notes. I try to include at least one hands-on activity, one or more quizzes, and the traditional end-of-unit test consisting mostly of multiple choice questions I find in the textbook. I try to be engaging, make the lessons fun, and hope that at the end of the unit my students get whatever concepts I‘ve presented so that we can move on to the next topic. I want to increase students‘ understanding of science concepts and their ability to connect understanding to the real-world. However, sometimes I feel that my lessons are missing something. For a long time I have wanted to develop a unit of instruction that I know is an effective tool for the teaching and learning of science. In this report, I describe my efforts to reform my curricula using the “Understanding by Design” process. I want to see if this style of curriculum design will help me be a more effective teacher and if it will lead to an increase in student learning. My hypothesis is that this new (for me) approach to teaching will lead to increased understanding of science concepts among students because it is based on purposefully thinking about learning targets based on “big ideas” in science. For my reformed curricula I incorporate lessons from several outstanding programs I‘ve been involved with including EpiCenter (Purdue University), Incorporated Research Institutions for Seismology (IRIS), the Master of Science Program in Applied Science Education at Michigan Technological University, and the Michigan Association for Computer Users in Learning (MACUL). In this report, I present the methodology on how I developed a new unit of instruction based on the Understanding by Design process. I present several lessons and learning plans I‘ve developed for the unit that follow the 5E Learning Cycle as appendices at the end of this report. I also include the results of pilot testing of one of lessons. Although the lesson I pilot-tested was not as successful in increasing student learning outcomes as I had anticipated, the development process I followed was helpful in that it required me to focus on important concepts. Conducting the pilot test was also helpful to me because it led me to identify ways in which I could improve upon the lesson in the future.
Resumo:
Climate science and climate change are included in the Next Generation Science Standards, curriculum standards that were released in 2013. How to incorporate these topics, especially climate change, has been a difficult task for teachers. A team of scientists are studying aerosols in the free troposphere; what their properties are, how they change while in the atmosphere and where they came from. Lessons were created based on this real, ongoing scientific research being conducted in the Azores. During these activities, students are exposed to what scientists actually do in the form of videos and participate in similar tasks such as conducting experiments, collecting data, and analyzing data. At the conclusion of the lessons, students will form conclusions based on the evidence they have at the time.
Resumo:
MiTEP, the Michigan Teacher Excellence Program, provides current teachers the opportunity to partner with Michigan Technological University to obtain graduate credit towards a Master’s degree in applied science education. In exchange, the university collects data on the implementation of inquiry and earth science concepts into science classrooms. This paper documents my experience within this program, including how it has affected my personal and professional learning.
Resumo:
Aluminum alloyed with small atomic fractions of Sc, Zr, and Hf has been shown to exhibit high temperature microstructural stability that may improve high temperature mechanical behavior. These quaternary alloys were designed using thermodynamic modeling to increase the volume fraction of precipitated tri-aluminide phases to improve thermal stability. When aged during a multi-step, isochronal heat treatment, two compositions showed a secondary room-temperature hardness peak up to 700 MPa at 450°C. Elevated temperature hardness profiles also indicated an increase in hardness from 200-300°C, attributed to the precipitation of Al3Sc, however, no secondary hardness response was observed from the Al3Zr or Al3Hf phases in this alloy.