5 resultados para Science Ability testing
em Digital Commons - Michigan Tech
Resumo:
In the realm of computer programming, the experience of writing a program is used to reinforce concepts and evaluate ability. This research uses three case studies to evaluate the introduction of testing through Kolb's Experiential Learning Model (ELM). We then analyze the impact of those testing experiences to determine methods for improving future courses. The first testing experience that students encounter are unit test reports in their early courses. This course demonstrates that automating and improving feedback can provide more ELM iterations. The JUnit Generation (JUG) tool also provided a positive experience for the instructor by reducing the overall workload. Later, undergraduate and graduate students have the opportunity to work together in a multi-role Human-Computer Interaction (HCI) course. The interactions use usability analysis techniques with graduate students as usability experts and undergraduate students as design engineers. Students get experience testing the user experience of their product prototypes using methods varying from heuristic analysis to user testing. From this course, we learned the importance of the instructors role in the ELM. As more roles were added to the HCI course, a desire arose to provide more complete, quality assured software. This inspired the addition of unit testing experiences to the course. However, we learned that significant preparations must be made to apply the ELM when students are resistant. The research presented through these courses was driven by the recognition of a need for testing in a Computer Science curriculum. Our understanding of the ELM suggests the need for student experience when being introduced to testing concepts. We learned that experiential learning, when appropriately implemented, can provide benefits to the Computer Science classroom. When examined together, these course-based research projects provided insight into building strong testing practices into a curriculum.
Resumo:
This report shares my efforts in developing a solid unit of instruction that has a clear focus on student outcomes. I have been a teacher for 20 years and have been writing and revising curricula for much of that time. However, most has been developed without the benefit of current research on how students learn and did not focus on what and how students are learning. My journey as a teacher has involved a lot of trial and error. My traditional method of teaching is to look at the benchmarks (now content expectations) to see what needs to be covered. My unit consists of having students read the appropriate sections in the textbook, complete work sheets, watch a video, and take some notes. I try to include at least one hands-on activity, one or more quizzes, and the traditional end-of-unit test consisting mostly of multiple choice questions I find in the textbook. I try to be engaging, make the lessons fun, and hope that at the end of the unit my students get whatever concepts I‘ve presented so that we can move on to the next topic. I want to increase students‘ understanding of science concepts and their ability to connect understanding to the real-world. However, sometimes I feel that my lessons are missing something. For a long time I have wanted to develop a unit of instruction that I know is an effective tool for the teaching and learning of science. In this report, I describe my efforts to reform my curricula using the “Understanding by Design” process. I want to see if this style of curriculum design will help me be a more effective teacher and if it will lead to an increase in student learning. My hypothesis is that this new (for me) approach to teaching will lead to increased understanding of science concepts among students because it is based on purposefully thinking about learning targets based on “big ideas” in science. For my reformed curricula I incorporate lessons from several outstanding programs I‘ve been involved with including EpiCenter (Purdue University), Incorporated Research Institutions for Seismology (IRIS), the Master of Science Program in Applied Science Education at Michigan Technological University, and the Michigan Association for Computer Users in Learning (MACUL). In this report, I present the methodology on how I developed a new unit of instruction based on the Understanding by Design process. I present several lessons and learning plans I‘ve developed for the unit that follow the 5E Learning Cycle as appendices at the end of this report. I also include the results of pilot testing of one of lessons. Although the lesson I pilot-tested was not as successful in increasing student learning outcomes as I had anticipated, the development process I followed was helpful in that it required me to focus on important concepts. Conducting the pilot test was also helpful to me because it led me to identify ways in which I could improve upon the lesson in the future.
Resumo:
As environmental problems became more complex, policy and regulatory decisions become far more difficult to make. The use of science has become an important practice in the decision making process of many federal agencies. Many different types of scientific information are used to make decisions within the EPA, with computer models becoming especially important. Environmental models are used throughout the EPA in a variety of contexts and their predictive capacity has become highly valued in decision making. The main focus of this research is to examine the EPA’s Council for Regulatory Modeling (CREM) as a case study in addressing science issues, particularly models, in government agencies. Specifically, the goal was to answer the following questions: What is the history of the CREM and how can this information shed light on the process of science policy implementation? What were the goals of implementing the CREM? Were these goals reached and how have they changed? What have been the impediments that the CREM has faced and why did these impediments occur? The three main sources of information for this research came from observations during summer employment with the CREM, document review and supplemental interviews with CREM participants and other members of the modeling community. Examining a history of modeling at the EPA, as well as a history of the CREM, provides insight into the many challenges that are faced when implementing science policy and science policy programs. After examining the many impediments that the CREM has faced in implementing modeling policies, it was clear that the impediments fall into two separate categories, classic and paradoxical. The classic impediments include the more standard impediments to science policy implementation that might be found in any regulatory environment, such as lack of resources and changes in administration. Paradoxical impediments are cyclical in nature, with no clear solution, such as balancing top-down versus bottom-up initiatives and coping with differing perceptions. These impediments, when not properly addressed, severely hinder the ability for organizations to successfully implement science policy.
Resumo:
Ultra-high performance fiber reinforced concrete (UHPFRC) has arisen from the implementation of a variety of concrete engineering and materials science concepts developed over the last century. This material offers superior strength, serviceability, and durability over its conventional counterparts. One of the most important differences for UHPFRC over other concrete materials is its ability to resist fracture through the use of randomly dispersed discontinuous fibers and improvements to the fiber-matrix bond. Of particular interest is the materials ability to achieve higher loads after first crack, as well as its high fracture toughness. In this research, a study of the fracture behavior of UHPFRC with steel fibers was conducted to look at the effect of several parameters related to the fracture behavior and to develop a fracture model based on a non-linear curve fit of the data. To determine this, a series of three-point bending tests were performed on various single edge notched prisms (SENPs). Compression tests were also performed for quality assurance. Testing was conducted on specimens of different cross-sections, span/depth (S/D) ratios, curing regimes, ages, and fiber contents. By comparing the results from prisms of different sizes this study examines the weakening mechanism due to the size effect. Furthermore, by employing the concept of fracture energy it was possible to obtain a comparison of the fracture toughness and ductility. The model was determined based on a fit to P-w fracture curves, which was cross referenced for comparability to the results. Once obtained the model was then compared to the models proposed by the AFGC in the 2003 and to the ACI 544 model for conventional fiber reinforced concretes.
Resumo:
This dissertation serves as a call to geoscientists to share responsibility with K-12 educators for increasing Earth science literacy. When partnerships are created among K-12 educators and geoscientists, the synergy created can promote Earth science literacy in students, teachers, and the broader community. The research described here resulted in development of tools that can support effective professional development for teachers. One tool is used during the planning stages to structure a professional development program, another set of tools supports measurement of the effectiveness of a development program, and the third tool supports sustainability of professional development programs. The Michigan Teacher Excellence Program (MiTEP), a Math/Science Partnership project funded by the National Science Foundation, served as the test bed for developing and testing these tools. The first tool, the planning tool, is the Earth Science Literacy Principles (ESLP). The ESLP served as a planning tool for the two-week summer field courses as part of the MiTEP program. The ESLP, published in 2009, clearly describe what an Earth science literate person should know. The ESLP consists of nine big ideas and their supporting fundamental concepts. Using the ESLP for planning a professional development program assisted both instructors and teacher-participants focus on important concepts throughout the professional development activity. The measurement tools were developed to measure change in teachers’ Earth science content-area knowledge and perceptions related to teaching and learning that result from participating in a professional development program. The first measurement tool, the Earth System Concept Inventory (ESCI), directly measures content-area knowledge through a succession of multiple-choice questions that are aligned with the content of the professional development experience. The second measurement, an exit survey, collects qualitative data from teachers regarding their impression of the professional development. Both the ESCI and the exit survey were tested for validity and reliability. Lesson study is discussed here as a strategy for sustaining professional development in a school or a district after the end of a professional development activity. Lesson study, as described here, was offered as a formal course. Teachers engaged in lesson study worked collaboratively to design and test lessons that improve the teachers’ classroom practices. Data regarding the impact of the lesson study activity were acquired through surveys, written documents, and group interviews. The data are interpreted to indicate that the lesson study process improved teacher quality and classroom practices. In the case described here, the lesson study process was adopted by the teachers’ district and currently serves as part of the district’s work in Professional Learning Communities, resulting in ongoing professional development throughout the district.