2 resultados para Schramb, Anselm, 1658-1720.

em Digital Commons - Michigan Tech


Relevância:

10.00% 10.00%

Publicador:

Resumo:

A shortage of petroleum asphalt is creating opportunities for engineers to utilize alternative pavement materials. Three types of bio oils, original bio oil (OB), dewatered bio oil (DWB) and polymer-modified bio oil (PMB) were used to modify and partially replace petroleum asphalt in this research. The research investigated the procedure of producing bio oil, the rheological properties of asphalt binders modified and partially replaced by bio oil, and the mechanical performances of asphalt mixtures modified by bio oil. The analysis of variance (ANOVA) is conducted on the test results for the significance analysis. The main finding of the study includes: 1) the virgin bioasphalt is softer than the traditional asphalt binder PG 58-28 but stiffer after RTFO aging because bio oil ages much faster than the traditional asphalt binder during mixing and compaction; 2) the binder test showed that the addition of bio oil is expected to improve the rutting performance while reduce the fatigue and low temperature performance; 3) both the mass loss and the oxidation are important reasons for the bio oil aging during RTFO test; the mixture test showed that 1) most of the bio oil modified asphalt mixture had slightly higher rutting depth than the control asphalt mixture, but the difference is not statistically significant; 2) the dynamic modulus of some of the bio oil modified asphalt mixture were slightly lower than the control asphalt mixture, the E* modulus is also not statistically significant; 3) most of the bio oil modified asphalt mixture had higher fatigue lives than the control asphalt mixture; 4) the inconsistence of binder test results and mixture test results may be attributed to that the aging during the mixing and compaction was not as high as that in the RTFO aging simulation. 5) the implementation of Michigan wood bioasphalt is anticipated to reduce the emission but bring irritation on eyes and skins during the mixing and compaction.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Over the past several decades, it has become apparent that anthropogenic activities have resulted in the large-scale enhancement of the levels of many trace gases throughout the troposphere. More recently, attention has been given to the transport pathway taken by these emissions as they are dispersed throughout the atmosphere. The transport pathway determines the physical characteristics of emissions plumes and therefore plays an important role in the chemical transformations that can occur downwind of source regions. For example, the production of ozone (O3) is strongly dependent upon the transport its precursors undergo. O3 can initially be formed within air masses while still over polluted source regions. These polluted air masses can experience continued O3 production or O3 destruction downwind, depending on the air mass's chemical and transport characteristics. At present, however, there are a number of uncertainties in the relationships between transport and O3 production in the North Atlantic lower free troposphere. The first phase of the study presented here used measurements made at the Pico Mountain observatory and model simulations to determine transport pathways for US emissions to the observatory. The Pico Mountain observatory was established in the summer of 2001 in order to address the need to understand the relationships between transport and O3 production. Measurements from the observatory were analyzed in conjunction with model simulations from the Lagrangian particle dispersion model (LPDM), FLEX-PART, in order to determine the transport pathway for events observed at the Pico Mountain observatory during July 2003. A total of 16 events were observed, 4 of which were analyzed in detail. The transport time for these 16 events varied from 4.5 to 7 days, while the transport altitudes over the ocean ranged from 2-8 km, but were typically less than 3 km. In three of the case studies, eastward advection and transport in a weak warm conveyor belt (WCB) airflow was responsible for the export of North American emissions into the FT, while transport in the FT was governed by easterly winds driven by the Azores/Bermuda High (ABH) and transient northerly lows. In the fourth case study, North American emissions were lofted to 6-8 km in a WCB before being entrained in the same cyclone's dry airstream and transported down to the observatory. The results of this study show that the lower marine FT may provide an important transport environment where O3 production may continue, in contrast to transport in the marine boundary layer, where O3 destruction is believed to dominate. The second phase of the study presented here focused on improving the analysis methods that are available with LPDMs. While LPDMs are popular and useful for the analysis of atmospheric trace gas measurements, identifying the transport pathway of emissions from their source to a receptor (the Pico Mountain observatory in our case) using the standard gridded model output, particularly during complex meteorological scenarios can be difficult can be difficult or impossible. The transport study in phase 1 was limited to only 1 month out of more than 3 years of available data and included only 4 case studies out of the 16 events specifically due to this confounding factor. The second phase of this study addressed this difficulty by presenting a method to clearly and easily identify the pathway taken by only those emissions that arrive at a receptor at a particular time, by combining the standard gridded output from forward (i.e., concentrations) and backward (i.e., residence time) LPDM simulations, greatly simplifying similar analyses. The ability of the method to successfully determine the source-to-receptor pathway, restoring this Lagrangian information that is lost when the data are gridded, is proven by comparing the pathway determined from this method with the particle trajectories from both the forward and backward models. A sample analysis is also presented, demonstrating that this method is more accurate and easier to use than existing methods using standard LPDM products. Finally, we discuss potential future work that would be possible by combining the backward LPDM simulation with gridded data from other sources (e.g., chemical transport models) to obtain a Lagrangian sampling of the air that will eventually arrive at a receptor.