2 resultados para SUBMILLIMETER WAVELENGTHS
em Digital Commons - Michigan Tech
Resumo:
This study develops an automated analysis tool by combining total internal reflection fluorescence microscopy (TIRFM), an evanescent wave microscopic imaging technique to capture time-sequential images and the corresponding image processing Matlab code to identify movements of single individual particles. The developed code will enable us to examine two dimensional hindered tangential Brownian motion of nanoparticles with a sub-pixel resolution (nanoscale). The measured mean square displacements of nanoparticles are compared with theoretical predictions to estimate particle diameters and fluid viscosity using a nonlinear regression technique. These estimated values will be confirmed by the diameters and viscosities given by manufacturers to validate this analysis tool. Nano-particles used in these experiments are yellow-green polystyrene fluorescent nanospheres (200 nm, 500 nm and 1000 nm in diameter (nominal); 505 nm excitation and 515 nm emission wavelengths). Solutions used in this experiment are de-ionized (DI) water, 10% d-glucose and 10% glycerol. Mean square displacements obtained near the surface shows significant deviation from theoretical predictions which are attributed to DLVO forces in the region but it conforms to theoretical predictions after ~125 nm onwards. The proposed automation analysis tool will be powerfully employed in the bio-application fields needed for examination of single protein (DNA and/or vesicle) tracking, drug delivery, and cyto-toxicity unlike the traditional measurement techniques that require fixing the cells. Furthermore, this tool can be also usefully applied for the microfluidic areas of non-invasive thermometry, particle tracking velocimetry (PTV), and non-invasive viscometry.
Resumo:
Atmospheric scattering plays a crucial rule in degrading the performance of electro optical imaging systems operating in the visible and infra-red spectral bands, and hence limits the quality of the acquired images, either through reduction of contrast or increase of image blur. The exact nature of light scattering by atmospheric media is highly complex and depends on the types, orientations, sizes and distributions of particles constituting these media, as well as wavelengths, polarization states and directions of the propagating radiation. Here we follow the common approach for solving imaging and propagation problems by treating the propagating light through atmospheric media as composed of two main components: a direct (unscattered), and a scattered component. In this work we developed a detailed model of the effects of absorption and scattering by haze and fog atmospheric aerosols on the optical radiation propagating from the object plane to an imaging system, based on the classical theory of EM scattering. This detailed model is then used to compute the average point spread function (PSF) of an imaging system which properly accounts for the effects of the diffraction, scattering, and the appropriate optical power level of both the direct and the scattered radiation arriving at the pupil of the imaging system. Also, the calculated PSF, properly weighted for the energy contributions of the direct and scattered components is used, in combination with a radiometric model, to estimate the average number of the direct and scattered photons detected at the sensor plane, which are then used to calculate the image spectrum signal to- noise ratio (SNR) in the visible near infra-red (NIR) and mid infra-red (MIR) spectral wavelength bands. Reconstruction of images degraded by atmospheric scattering and measurement noise is then performed, up to the limit imposed by the noise effective cutoff spatial frequency of the image spectrum SNR. Key results of this research are as follows: A mathematical model based on Mie scattering theory for how scattering from aerosols affects the overall point spread function (PSF) of an imaging system was developed, coded in MATLAB, and demonstrated. This model along with radiometric theory was used to predict the limiting resolution of an imaging system as a function of the optics, scattering environment, and measurement noise. Finally, image reconstruction algorithms were developed and demonstrated which mitigate the effects of scattering-induced blurring to within the limits imposed by noise.