4 resultados para STRUCTURAL CHARACTERIZATION
em Digital Commons - Michigan Tech
Resumo:
Isolated water-soluble analytes extracted from fog water collected during a radiation fog event near Fresno, CA were analyzed using collision induced dissociation and ultrahigh-resolution mass spectrometry. Tandem mass analysis was performed on scan ranges between 100-400 u to characterize the structures of nitrogen and/or sulfur containing species. CHNO, CHOS, and CHNOS compounds were targeted specifically because of the high number of oxygen atoms contained in their molecular formulas. The presence of 22 neutral losses corresponding to fragment ions was evaluated for each of the 1308 precursors. Priority neutral losses represent specific polar functional groups (H2O, CO2, CH3OH, HNO3, SO3, etc., and several combinations of these). Additional neutral losses represent non-specific functional groups (CO, CH2O, C3H8, etc.) Five distinct monoterpene derived organonitrates, organosulfates, and nitroxy-organosulfates were observed in this study, including C10H16O7S, C10H17NO7S, C10H17 NO8S, C10H17NO9S, and C10H17NO10S. Nitrophenols and linear alkyl benzene sulfonates were present in high abundance. Liquid chromatography/mass spectrometery methodology was developed to isolate and quantify nitrophenols based on their fragmentation behavior.
Resumo:
Presented here, is the work done with a series of binucleating ligands based on phosphine and phosphine oxide appended p-hydroquinones and their reactions towards various metals sources. The long term goal of the project was to produce coordination polymers that would have novel electronic, magnetic, and optical properties which would be of use in the field of molecular electronics. Binucleating ligands contained a p-hydroquinone motif in which various phosphine- and phosphine oxide substituents have been placed in the ortho position relative to each of the hydroxy position were synthesized. A previously published synthetic method for such lugands utilized n-BuLi to form a phenyl lithium intermediate which was quenched with chlorodiphenylphosphine. This technique was also used to produce a ligand with diisopropylphosphine groups. Phosphine ligands, containing the same structural motif, were also generated using LDA as the lithiating agent. This technique was found to be higher yielding. Phosphine chalcogenide ligands were accessed by further oxidizing the low valent phosphorous centers with either hydrogen peroxide or with elemental sulfur. These ligands were characterized using multinuclear NMR, low and high resolution mass spectroscopy, FTIR, and single crystal X-ray diffraction. Their electrochemical properties were explored with cyclic voltammetry. The phosphine appended ligands were used in the synthesis of a several bimetallic complexes. It was found that the ligands readily reacted with NiCp2 and NiCp*2, displacing one of the cyclopentadiene (Cp) or pentamethylcyclopentadiene (Cp*) rings. A cyclopentadiene complexes, containing diisopropylphine, was readily oxidized by[FeCp2]PF6 to give a NMR silent mixed valence complex. Cyclic voltammetry of these complexes showed a number of reversible waves with a large potential separation. The mixed valence compounds also showed a large absorbance band in the NIR region which was assigned to be an intervalence charge transfer. The cyclic voltammetry and NIR spectroscopy suggest that these systems are very capable of efficient metal-to-metal charge transfer. These complexes were characterized by multinuclear NMR, single crystal X-ray diffraction, UV/VIS-NIR spectroscopy and elemental analysis. The phosphine oxide ligands were reacted with a variety of different metal sources but limited success was gained in obtaining single crystals, allowing structural characterization of these compounds. Single crystals were obtained from products generated by reacting the diphenylphosphine oxide ligand with (Bipy)Cu(NO3)2 and Cu(NO3)2. In all cases the ligand had been further oxidized to a 2,5-dihydroxy-1,4-benzoquinone motif. In the reaction between the diphenylphosphine oxide ligand and (Bipy)Cu(NO3)2 it was found that the phosphine oxide moiety was involved with intermolecular coordination leading to the formation of a one-dimensional polymer composed of a series of bimetallic complexes tethered together. When NaSbF6 was present in the reaction with (Bipy)Cu(NO3)2 a unique tetrametallic complex was formed. Here the phospine oxide moiety was oriented so that two bimetallic complexes were bound together. If only Cu(NO3)2 was present, a two-dimensional polymeric sheet was formed where the ligand was present in two different coordination modes. The electronic properties of these complexes remained to be assessed.
Resumo:
We are interested in the syntheses of new complexes and in their characterization by single crystal X-ray diffraction techniques. Once we understand the structures, studies aimed at understanding uses of these complexes in the field of catalytic epoxidation using complexes soluble in water and syntheses of thin films (not assessed) were conducted. The syntheses, characterization and catalytic properties of a series of mononuclear, dinuclear and tetranuclear molybdenum and tungsten oxo complexes are described. The syntheses and structural characterization of two copper coordination polymers with 3,5-dihydroxylbenzoate ligand, and five paddlewheel shaped copper dendrimers coordinated with Fréchet-type dendrons are also detailed. The background of this dissertation is outlined in Chapter 1. Chapter 2 describes the syntheses, and characterization of two new mononuclear molybdenum(VI) and tungsten(VI) oxo complexes, MoO2Cl2(OPPh2CH2OH)2, and WO2Cl2(OPPh2CH2OH)2, bearing hydrophilic phosphine oxide ligand. The catalytic properties of these complexes for the epoxidation of cis-cyclooctene were also studied. Two new dinuclear molybdenum(VI) and tungsten(VI) oxo complexes Mo2O4Cl2[(HOCH2)PhPOO]2, and (CH3O)2(O)W(μ-O)(μ-O2PPh2)2W(O)(CH3O)2, bearing organophosphinate ligand are described in Chapter 3 and 4. Chapter 4 and 5 describes the syntheses and characterization of tetranuclear molybdenum(V) oxo complexes bearing various organophosphinate ligands. The catalytic abilities of these complexes for the epoxidation of cis-cyclooctene in the presence of hydrogen peroxide as oxidant were explored as well. Various spectroscopic methods, such as IR, UV-vis, and NMR are used to characterize the nature of these complexes. Crystal structures of compounds MoO2Cl2(OPPh2CH2OH)2, WO2Cl2(OPPh2CH2OH)2, Mo2O4Cl2[(HOCH2)PhPOO]2, (CH3O)2(O)W(μ-O)(μ-O2PPh2)2W(O)(CH3O)2, and Mo4(µ3-O)4(µ-O2PR2)4O4 (R=Ph, Me, ClCH2, o-C6H4(CH2)2) are also presented. The syntheses, and structural characterization of three copper(II) coordination polymers bearing 3,5-dihydroxybenzoate ligand are described in Chapter 6. Two copper(II) coordination polymers, [Cu2(3,5-dhb)2(pyridine)4]n, and [Cu2(3,5-dhb)4]n were afforded based on different amount of pyridine used in the reaction. The structures of these complexes are further built into 2D or 3D networks via inter or intra hydrogen bonds. The syntheses and structural characterization of the zinc(II) monomer, Zn(3,5-dhb)2(pyridine)2 is also described in this Chapter. Chapter 7 describes the syntheses, and characterization of five dendronized dicopper complexes bearing different generations of Fréchet-type dendrons. The structures of 3,5- bis(benzoyloxl)benzoic acid, 3,5-(PhCOO)2PhCOOH (G1), Cu2(3,5-dhb)4(THF)2, Cu2(G1)4(pyridine)2, and Cu2(G1)4(CH3OH)2 were characterized unambiguously by single X-ray diffraction. In addition, all compounds were characterized by FT-IR, UV-vis spectroscopy and elemental analyses.
Resumo:
This research focused on the to modification of the surface structure of titanium implants with nanostructured morphology of TiO2 nanotubes and studied the interaction of nanotubes with osteoblast cells to understand the parameters that affect the cell growth. The electrical, mechanical, and structural properties of TiO2 nanotubes were characterized to establish a better understanding on the properties of such nanoscale morphological structures. To achieve the objectives of this research work I transformed the titanium and its alloys, either in bulk sheet form, bulk machined form, or thin film deposited on another substrate into a surface of titania nanotubes using a low cost and environmentally friendly process. The process requires only a simple electrolyte, low cost electrode, and a DC power supply. With this simple approach of scalable nanofabrication, a typical result is nanotubes that are each approximately 100nm in diameter and have a wall thickness of about 20nm. By changing the fabrication parameters, independent nanotubes can be fabricated with open volume between them. Titanium in this form is termed onedimensional since electron transport is narrowly confined along the length of the nanotube. My Ph.D. accomplishments have successfully shown that osteoblast cells, the cells that are the precursors to bone, have a strong tendency to attach to the inside and outside of the titanium nanotubes onto which they are grown using their filopodia – cell’s foot used for locomotion – anchored to titanium nanotubes. In fact it was shown that the cell prefers to find many anchoring sites. These sites are critical for cell locomotion during the first several weeks of maturity and upon calcification as a strongly anchored bone cell. In addition I have shown that such a surface has a greater cell density than a smooth titanium surface. My work also developed a process that uses a focused and controllably rastered ion beam as a nano-scalpel to cut away sections of the osteoblast cells to probe the attachment beneath the main cell body. Ultimately the more rapid growth of osteoblasts, coupled with a stronger cell-surface interface, could provide cost reduction, shorter rehabilitation, and fewer follow-on surgeries due to implant loosening.