3 resultados para STRIPS
em Digital Commons - Michigan Tech
Resumo:
Riparian ecology plays an important part in the filtration of sediments from upland agricultural lands. The focus of this work makes use of multispectral high spatial resolution remote sensing imagery (Quickbird by Digital Globe) and geographic information systems (GIS) to characterize significant riparian attributes in the USDA’s experimental watershed, Goodwin Creek, located in northern Mississippi. Significant riparian filter characteristics include the width of the strip, vegetation properties, soil properties, topography, and upland land use practices. The land use and vegetation classes are extracted from the remotely sensed image with a supervised maximum likelihood classification algorithm. Accuracy assessments resulted in an acceptable overall accuracy of 84 percent. In addition to sensing riparian vegetation characteristics, this work addresses the issue of concentrated flow bypassing a riparian filter. Results indicate that Quickbird multispectral remote sensing and GIS data are capable of determining riparian impact on filtering sediment. Quickbird imagery is a practical solution for land managers to monitor the effectiveness of riparian filtration in an agricultural watershed.
Resumo:
With proper application of Best Management Practices (BMPs), the impact from the sediment to the water bodies could be minimized. However, finding the optimal allocation of BMP can be difficult, since there are numerous possible options. Also, economics plays an important role in BMP affordability and, therefore, the number of BMPs able to be placed in a given budget year. In this study, two methodologies are presented to determine the optimal cost-effective BMP allocation, by coupling a watershed-level model, Soil and Water Assessment Tool (SWAT), with two different methods, targeting and a multi-objective genetic algorithm (Non-dominated Sorting Genetic Algorithm II, NSGA-II). For demonstration, these two methodologies were applied to an agriculture-dominant watershed located in Lower Michigan to find the optimal allocation of filter strips and grassed waterways. For targeting, three different criteria were investigated for sediment yield minimization, during the process of which it was found that the grassed waterways near the watershed outlet reduced the watershed outlet sediment yield the most under this study condition, and cost minimization was also included as a second objective during the cost-effective BMP allocation selection. NSGA-II was used to find the optimal BMP allocation for both sediment yield reduction and cost minimization. By comparing the results and computational time of both methodologies, targeting was determined to be a better method for finding optimal cost-effective BMP allocation under this study condition, since it provided more than 13 times the amount of solutions with better fitness for the objective functions while using less than one eighth of the SWAT computational time than the NSGA-II with 150 generations did.
Resumo:
This study investigated the physical characteristics of lightweight concrete produced using waste materials as coarse aggregate. The study was inspired by the author’s Peace Corps service in Kilwa, Tanzania. Coconut shell, sisal fiber, and PET plastic were chosen as the test waste products due to their abundance in the area. Two mixes were produced for each waste product and the mix proportions designed for resulting compressive strengths of 3000 and 5000 psi. The proportions were selected based on guidelines for lightweight concrete from the American Concrete Institute. In preparation for mixing, coconut shells were crushed into aggregate no larger than 3/4 inch, sisal fiber was cut into pieces no longer than 3/8 inch, and PET plastic was shredded into 1/4 inch-wide strips no longer than 6 inches. Replicate samples were mixed and then cured for 28 days before they were tested for compressive strength, unit weight, and absorption. The resulting data were compared to ASTM Standards for lightweight concrete masonry units to determine their adequacy. Based on these results, there is potential for coconut shell to be used as coarse aggregate in lightweight concrete. Sisal fiber was unsuccessful in producing the appropriate compressive strength. However, the reduction in spalling of the hardened concrete and the induction of air in the mixes incorporating sisal fiber suggests that it has the potential to improve other characteristics of lightweight concrete. Concrete mixes using PET plastic as aggregate resulted in adequate compressive strengths, but were too dense to be considered ‘lightweight’ concrete. With some adjustments to slightly decrease absorption and unit weight, the PET plastic concrete mixes could be classified as medium weight concrete and, therefore, achieve many of the same benefits as would be seen with lightweight concrete.