2 resultados para STEM faculty development
em Digital Commons - Michigan Tech
Resumo:
Organic amendments are commonly used to improve tree nursery soil conditions for increased seedling growth. However, few studies compare organic amendments effects on soil conditions, and fewer compare subsequent effects on seedling growth. The effects of three organic amendments on soil properties and seedling growth were investigated at the USDA Forest Service J.W. Toumey Nursery in Watersmeet, MI. Pine sawdust (red pine, Pinus resinosa), hardwood sawdust (maple, Acer spp. and aspen, Populus spp.), and peat were individually incorporated into a loamy sand nursery soil in August, 2006, and soil properties were sampled periodically for the next 14 months. Jack (Pinus banksiana), red, and white pine (Pinus strobus) were sown into test plots in June, 2007 and sampled for growth responses at the end of the growing season. It is hypothesized; pine sawdust and peat can be used as a satisfactory soil amendment to improve soil conditions and produce high quality seedlings, when compared to hardwood sawdust in bareroot nursery soils. This study has the potential to reduce nursery costs while broadening soil amendment options. The addition of peat and pine sawdust increased soil organic matter above control soil conditions after 14 months. However, hardwood sawdust-amended soils did not differ from control soils after same time period. High N concentrations in peat increased total soil N over the other treatments. Similarly, the addition of peat increased soil matric potential and available water over all other treatments. Seedlings grew tallest with the largest stem diameter, and had the largest biomass in both control soil and soil amended with peat, compared to either sawdust treatment. Seedlings grown in peat-amended soils had higher N concentrations than those grown in soils treated with pine sawdust, though neither was different from seedlings grown in control or hardwood sawdust-amended soils. Overall, peat is a well suited organic soil amendment for the enhancement of soil properties, but no amendments were able to increase one-year seedling growth over control soils.
Resumo:
Auxin is a key regulator in plant growth and development. This dissertation examines the role of auxin and polar auxin transport in woody growth and development. Strategies of promoter reporter system, microarray expression analysis, transgenic modification, physiological assays, anatomical analysis, and histochemical/biochemical assays were employed to improve our understanding of auxin study in Populus. The results demonstrate various aspects of auxin regulation on shoot growth, root development, wood formation, and gravitropism in woody tissues. We describe the behavior of the DR5 reporter system for measuring auxin concentrations and response in stably transformed Populus trees. Our study shows that DR5 reporter system can be efficiently used in Populus to study auxin biology at a cellular resolution. We investigated the global gene expression in responding to auxin in Populus root. The results revealed groups of IBA up- and down- regulated genes involved in various biological processes including cell wall modification, root growth and lateral root formation, transporter activity and hormone crosstalk. We also verify two of the identified genes' function by transgenic modification in Populus, which encode auxin efflux carrier PtPIN9 and transcription factor PtERF72. We investigated the role of PtPIN9 in woody growth and development, especially in wood formation and gravitropic response in woody stem. We found that overexpressing PtPIN9 enhanced several growth parameters while suppression of PtPIN9 has inhibited tension wood formation. Our results show that PIN9 and other members from PIN family could be possible useful tools for increasing biomass productivity, wood quality, or in modifying plant form.