6 resultados para STARCH-BASED FILMS
em Digital Commons - Michigan Tech
Resumo:
The patterning of photoactive purple membrane (PM) films onto electronic substrates to create a biologically based light detection device was investigated. This research is part of a larger collaborative effort to develop a miniaturized toxin detection platform. This platform will utilize PM films containing the photoactive protein bacteriorhodopsin to convert light energy to electrical energy. Following an effort to pattern PM films using focused ion beam machining, the photolithography based bacteriorhodopsin patterning technique (PBBPT) was developed. This technique utilizes conventional photolithography techniques to pattern oriented PM films onto flat substrates. After the basic patterning process was developed, studies were conducted that confirmed the photoelectric functionality of the PM films after patterning. Several process variables were studied and optimized in order to increase the pattern quality of the PM films. Optical microscopy, scanning electron microscopy, and interferometric microscopy were used to evaluate the PM films produced by the patterning technique. Patterned PM films with lateral dimensions of 15 μm have been demonstrated using this technique. Unlike other patterning techniques, the PBBPT uses standard photolithographic processes that make its integration with conventional semiconductor fabrication feasible. The final effort of this research involved integrating PM films patterned using the PBBPT with PMOS transistors. An indirect integration of PM films with PMOS transistors was successfully demonstrated. This indirect integration used the voltage produced by a patterned PM film under light exposure to modulate the gate of a PMOS transistor, activating the transistor. Following this success, a study investigating how this PM based light detection system responded to variations in light intensity supplied to the PM film. This work provides a successful proof of concept for a portion of the toxin detection platform currently under development.
Resumo:
The monolithic integration of dissimilar microsystems is often limited by conflicts in thermal budget. One of the most prevalent examples is the fabrication of active micro-electromechanical systems (MEMS), as structural films utilized for surface micromachining such as polysilicon typically require processing at temperatures unsuitable for microelectronic circuitry. A localized annealing process could provide for the post-deposition heat treatment of integrated structures without compromising active devices. This dissertation presents a new microfabrication technology based on the inductive heating of ferromagnetic films patterned to define regions for heat treatment. Support is provided through theory, finite-element modeling, and experimentation, concluding with the demonstration of inductive annealing on polysilicon inertial sensing structures. Though still in its infancy, the results confirm the technology to be a viable option for integrated MEMS as well as any microsystem fabrication process requiring a thermal gradient.
Resumo:
Magnetic iron garnets as well as magnetic photonic crystals are of great interests in magneto-optic applications such as isolators, current captors, circulators, TE-TM mode conversion, wavelength accordable filters, optical sensors and switches, all of which provide a promising platform for future integrated optical circuits. In the present work, two topics are studied based on magnetic iron garnet films. In the first part, the characteristics of the magnetization are investigated for ridge waveguides fabricated on (100) oriented iron garnet thin films. The magnetic response in magneto-optic waveguides patterned on epitaxial magnetic garnet films depends on the crystallographic orientation of the waveguides and the magnetic anisotropy of the material. These can be studied by polarization rotation hysteresis loops, which are related to the component of magnetization parallel to the light propagation direction and the linear birefringence. Polarization rotation hysteresis loops for low birefringence waveguides with different orientations are experimentally investigated. Asymmetric stepped curves are obtained from waveguides along, due to the large magnetocrystalline anisotropy in the plane. A model based on the free energy density is developed to demonstrate the motion of the magnetization and can be used in the design of magneto-optic devices. The second part of this thesis focuses on the design and fabrication of high-Q cavities in two-dimensional magneto-photonic crystal slabs. The device consists of a layer of silicon and a layer of iron garnet thin film. Triangular lattice elliptical air holes are patterned in the slab. The fundamental TM band gap overlaps with the first-order TE band gap from 0374~0.431(a/λ) showing that both TE and TM polarization light can be confined in the photonic crystals. A nanocavity is designed to obtain both TE and TM defect modes in the band gaps. Additional work is needed to overlap the TE and TM defect modes and obtain a high-Q cavity so as to develop miniaturized Faraday rotators.
Resumo:
Nitric oxide has the potential to greatly improve intravascular measurements by locally inhibiting thrombus formation and dilating blood vessels. pH, the partial pressure of oxygen, and the partial pressure of carbon dioxide are three arterial blood parameters that are of interest to clinicians in the intensive care unit that can benefit from an intravascular sensor. This work explores fabrication of absorbance and fluorescence based pH sensing chemistry, the sensing chemistries' compatibility with nitric oxide, and a controllable nitric oxide releasing polymer. The pH sensing chemistries utilized various substrates, dyes, and methods of immobilization. Absorbance sensing chemistries used sol-gels, fumed silica particles, mesoporous silicon oxide, bromocresol purple, phenol red, bromocresol green, physical entrapment, molecular interactions, and covalent linking. Covalently linking the dyes to fumed silica particles and mesoporous silicon oxide eliminated leaching in the absorbance sensing chemistries. The structures of the absorbance dyes investigated were similar and bromocresol green in a sol-gel was tested for compatibility with nitric oxide. Nitric oxide did not interfere with the use of bromocresol green in a pH sensor. Investigated fluorescence sensing chemistries utilized silica optical fibers, poly(allylamine) hydrogel, SNARF-1, molecular interactions, and covalent linking. SNARF-1 covalently linked to a modified poly(allylamine) hydrogel was tested in the presence of nitric oxide and showed no interference from the nitric oxide. Nitric oxide release was controlled through the modulation of a light source that cleaved the bond between the nitric oxide and a sulfur atom in the donor. The nitric oxide donor in this work is S-nitroso-N-acetyl-D-penicillamine which was covalently linked to a silicone rubber made from polydimethylsiloxane. It is shown that the surface flux of nitric oxide released from the polymer films can be increased and decreased by increasing and decreasing the output power of the LED light source. In summary, an optical pH sensing chemistry was developed that eliminated the chronic problem of leaching of the indicator dye and showed no reactivity to nitric oxide released, thereby facilitating the development of a functional, reliable intravascular sensor.
Resumo:
The hydrogen ion activity (pH) is a very important parameter in environment monitoring, biomedical research and other applications. Optical pH sensors have several advantages over traditional potentiometric pH measurement, such as high sensitivity, no need of constant calibration, easy for miniaturization and possibility for remote sensing. Several pH indicators has been successfully immobilized in three different solid porous materials to use as pH sensing probes. The fluorescent pH indicator fluorescein-5-isothiocyanate (FITC) was covalently bound onto the internal surface of porous silica (pore size ~10 nm) and retained its pH sensitivity. The excited state pK* a of FITC in porous silica (5.58) was slightly smaller than in solution (5.68) due to the free silanol groups (Si-OH) on the silica surface. The pH sensitive range for this probe is pH 4.5 - 7.0 with an error less than 0.1 pH units. The probe response was reproducible and stable for at least four month, stored in DI water, but exhibit a long equilibrium of up to 100 minutes. Sol-gel based pH sensors were developed with immobilization of two fluorescent pH indicators fluorescein-5-(and-6)-sulfonic acid, trisodium salt (FS) and 8-hydroxypyrene- 1,3,6-trisulfonic acid (HPTS) through physical entrapment. Prior to immobilization, the indicators were ion-paired with a common surfactant hexadecyltrimethylammonium bromide (CTAB) in order to prevent leaching. The sol-gel films were synthesized through the hydrolysis of two different precursors, ethyltriethoxysilane (ETEOS) and 3- glycidoxypropyltrimethoxysilane (GPTMS) and deposited on a quartz slide through spin coating. The pK a of the indicators immobilized in sol-gel films was much smaller than in solutions due to silanol groups on the inner surface of the sol-gel films and ammonium groups from the surrounding surfactants. Unlike in solution, the apparent pK a of the indicators in sol-gel films increased with increasing ionic strength. The equilibrium time for these sensors was within 5 minutes (with film thickness of ~470 nm). Polyethylene glycol (PEG) hydrogel was of interest for optical pH sensor development because it is highly proton permeable, transparent and easy to synthesize. pH indicators can be immobilized in hydrogel through physical entrapment and copolymerization. FS and HPTS ion-pairs were physically entrapped in hydrogel matrix synthesized via free radical initiation. For covalent immobilization, three indicators, 6,8-dihydroxypyrene-1,3- disulfonic acid (DHPDS), 2,7-dihydroxynaphthalene-3,6-disulfonic acid (DHNDS) and cresol red were first reacted with methacrylic anhydride (MA) to form methacryloylanalogs for copolymerization. These hydrogels were synthesized in aqueous solution with a redox initiation system. The thickness of the hydrogel film is controlled as ~ 0.5 cm and the porosity can be adjusted with the percentage of polyethylene glycol in the precursor solutions. The pK a of the indicators immobilized in the hydrogel both physically and covalently were higher than in solution due to the medium effect. The sensors are stable and reproducible with a short equilibrium time (less than 4 minutes). In addition, the color change of cresol red immobilized hydrogel is vivid from yellow (acidic condition) to purple (basic condition). Due to covalently binding, cresol red was not leaching out from the hydrogel, making it a good candidate of reusable "pH paper".
Resumo:
This dissertation presents detailed experimental and theoretical investigations of nonlinear and nonreciprocal effects in magnetic garnet films. The dissertation thus comprises two major sections. The first section concentrates on the study of a new class of nonlinear magneto-optic thin film materials possessing strong higher order magnetic susceptibility for nonlinear optical applications. The focus was on enlarging the nonlinear performance of ferrite garnet films by strain generation and compositional gradients in the sputter-deposition growth of these films. Under this project several bismuth-substituted yttrium iron garnet (Bi,Y) 3 (Fe,Ga)5 O12(acronym as Bi:YIG) films have been sputter-deposited over gadolinium gallium garnet (Gd 3 Ga5 O12 ) substrates and characterized for their nonlinear optical response. One of the important findings of this work is that lattice mismatch strain drives the second harmonic (SH) signal in the Bi:YIG films, in agreement with theoretical predictions; whereas micro-strain was found not to correlate significantly with SH signal at the micro-strain levels present in these films. This study also elaborates on the role of the film's constitutive elements and their concentration gradients in nonlinear response of the films. Ultrahigh sensitivity delivered by second harmonic generation provides a new exciting tool for studying magnetized surfaces and buried interfaces, making this work important from both a fundamental and application point of view. The second part of the dissertation addresses an important technological need; namely the development of an on-chip optical isolator for use in photonic integrated circuits. It is based on two related novel effects, nonreciprocal and unidirectional optical Bloch oscillations (BOs), recently proposed and developed by Professor Miguel Levy and myself. This dissertation work has established a comprehensive theoretical background for the implementation of these effects in magneto-optic waveguide arrays. The model systems we developed consist of photonic lattices in the form of one-dimensional waveguide arrays where an optical force is introduced into the array through geometrical design turning the beam sideways. Laterally displaced photons are periodically returned to a central guide by photonic crystal action. The effect leads to a novel oscillatory optical phenomenon that can be magnetically controlled and rendered unidirectional. An on-chip optical isolator was designed based on the unidirectionality of the magneto-opticBloch oscillatory motion. The proposed device delivers an isolation ratio as high as 36 dB that remains above 30 dB in a 0.7 nm wavelength bandwidth, at the telecommunication wavelength 1.55 μm. Slight modifications in isolator design allow one to achieve an even more impressive isolation ratio ~ 55 dB, but at the expense of smaller bandwidth. Moreover, the device allows multifunctionality, such as optical switching with a simultaneous isolation function, well suited for photonic integrated circuits.