3 resultados para SHOWER DETECTOR
em Digital Commons - Michigan Tech
Resumo:
The High-Altitude Water Cherenkov (HAWC) Experiment is a gamma-ray observatory that utilizes water silos as Cherenkov detectors to measure the electromagnetic air showers created by gamma rays. The experiment consists of an array of closely packed water Cherenkov detectors (WCDs), each with four photomultiplier tubes (PMTs). The direction of the gamma ray will be reconstructed using the times when the electromagnetic shower front triggers PMTs in each WCD. To achieve an angular resolution as low as 0.1 degrees, a laser calibration system will be used to measure relative PMT response times. The system will direct 300ps laser pulses into two fiber-optic networks. Each network will use optical fan-outs and switches to direct light to specific WCDs. The first network is used to measure the light transit time out to each pair of detectors, and the second network sends light to each detector, calibrating the response times of the four PMTs within each detector. As the relative PMT response times are dependent on the number of photons in the light pulse, neutral density filters will be used to control the light intensity across five orders of magnitude. This system will run both continuously in a low-rate mode, and in a high-rate mode with many intensity levels. In this thesis, the design of the calibration system and systematic studies verifying its performance are presented.
Resumo:
I will present my work about constructing and characterizing a single photon detector. Using the 1550nm laser and second harmonic light generation, I am able to count single photons on a Multi‐Pixel Photon Counter (MPPC) silicon APD. My results show that upwards of 22% quantum efficiency is achievable with the MPPC. Future work will include coincidence detection of correlated photon‐pair.
Resumo:
Clouds are one of the most influential elements of weather on the earth system, yet they are also one of the least understood. Understanding their composition and behavior at small scales is critical to understanding and predicting larger scale feedbacks. Currently, the best method to study clouds on the microscale is through airborne in situ measurements using optical instruments capable of resolving clouds on the individual particle level. However, current instruments are unable to sufficiently resolve the scales important to cloud evolution and behavior. The Holodec is a new generation of optical cloud instrument which uses digital inline holography to overcome many of the limitations of conventional instruments. However, its performance and reliability was limited due to several deficiencies in its original design. These deficiencies were addressed and corrected to advance the instrument from the prototype stage to an operational instrument. In addition, the processing software used to reconstruct and analyze digitally recorded holograms was improved upon to increase robustness and ease of use.